1.7 Practice Exam Problems

Practice – Mass Percent


What is the mass percent of cobalt in Vitamin B12 (C63H88CoN14O14P)?

Solution
  • The mass of a Vitamin B12 molecule is 1355.38 amu.
  • The mass of a cobalt atom is 58.93 amu.

\[\begin{align*} \%~\mathrm{Co} &= \dfrac{58.93~\mathrm{amu}}{1355.38~\mathrm{amu}} \times 100\% = 4.348\% \end{align*}\]

Practice – Chemical Formulas


You need the molecular formula of an unknown sample. Your lab partner is able to find that the sample’s molecular mass is 142.04 g mol–1. You are able to find that the sample is composed of 32.37% sodium, 22.57% sulfur, and 45.06% oxygen. Give the structural and empirical formula and name this compound.

Solution

Find the mass of each element.

\[\begin{align*} m_{\mathrm{Na}} &= \left ( \dfrac{32.37\%}{100} \right ) \left ( \dfrac{142.04~\mathrm{g}}{} \right ) = 45.98~\mathrm{g} \\[2ex] m_{\mathrm{S}} &= \left ( \dfrac{22.57\%}{100} \right ) \left ( \dfrac{142.04~\mathrm{g}}{} \right ) = 32.06~\mathrm{g} \\[2ex] m_{\mathrm{O}} &= \left ( \dfrac{45.06\%}{100} \right ) \left ( \dfrac{142.04~\mathrm{g}}{} \right ) = 64.00~\mathrm{g} \end{align*}\]

Find the mol of atoms needed to equal the calculated masses by using the molar masses of each element.

\[\begin{align*} n_\mathrm{Na} &= \dfrac{45.98~\mathrm{g}}{22.99~\mathrm{g~mol^{-1}}} = 2~\mathrm{mol} \\[2ex] n_\mathrm{S} &= \dfrac{32.06~\mathrm{g}}{32.06~\mathrm{g~mol^{-1}}} = 1~\mathrm{mol} \\[2ex] n_\mathrm{O} &= \dfrac{64.00~\mathrm{g}}{16.00~\mathrm{g~mol^{-1}}} = 4~\mathrm{mol} \end{align*}\]

Create a structural formula.

\[\begin{align*} \mathrm{Na}_{2}\mathrm{S}\mathrm{O}_{4} \end{align*}\]

Practice – Chemical Formulas


Give the empirical structure and molecular structure of a compound composed of 84.1% carbon, 15.9% hydrogen and a molecular weight of 114.23 g mol–1.

Solution

Find the mass of each element.

\[\begin{align*} m_{\mathrm{C}} &= \left ( \dfrac{84.1\%}{100} \right ) \left ( \dfrac{114.23~\mathrm{g}}{} \right ) = 96.07~\mathrm{g} \\[2ex] m_{\mathrm{H}} &= \left ( \dfrac{15.9\%}{100} \right ) \left ( \dfrac{114.23~\mathrm{g}}{} \right ) = 18.16~\mathrm{g} \end{align*}\]

Find the mol of atoms needed to equal the calculated masses by using the molar masses of each element.

\[\begin{align*} n_\mathrm{C} &= \dfrac{96.07~\mathrm{g}}{12.01~\mathrm{g~mol^{-1}}} = 8~\mathrm{mol} \\[2ex] n_\mathrm{H} &= \dfrac{18.16~\mathrm{g}}{1.01~\mathrm{g~mol^{-1}}} = 18~\mathrm{mol} \end{align*}\]

Create a molecular formula.

\[\begin{align*} \mathrm{C}_{8}\mathrm{H}_{18} \end{align*}\]

Create an empirical formula by reducing the subscripts in the molecular formula.

\[\begin{align*} \mathrm{C}_{8}\mathrm{H}_{18} \rightarrow \mathrm{C}_{8/2}\mathrm{H}_{18/2} \rightarrow \mathrm{C_4H_9} \end{align*}\]

Practice – Dilution


Willy Wonka’s bubble machine has very precise requirements when it comes to the chemicals that are put into it. His bubble machine requires soap, water, and glycerine (C3H8O3). Willy finds 200.0 mL of a premade glycerine solution in a volumetric flask, but it says that there are 60.00 g of glycerine. His bubble machine requires there to be 236.43 mL of 1.123 M glycerine added.

  1. Is the premade solution the correct concentration?
  2. What volume of stock solution (in mL) does he need to dilute to 236.43 mL to get the final concentration of 1.123 M?
  3. How much water (in mL) is needed?
  4. How much glycerine (in g) should be present in the required glycerine solution?
Solution

Part A

Find the molar concentration of the premade solution. The molar mass of glycerine is 92.09 g mol–1.

\[\begin{align*} c &= \dfrac{\mathrm{mol~solute}}{\mathrm{L~solution}} \\[2ex] &= \dfrac{\left (60.00~\mathrm{g}\right )\left ( \dfrac{\mathrm{mol}}{92.09~\mathrm{g}} \right ) } {\left ( 200.0~\mathrm{mL} \right ) \left ( \dfrac{\mathrm{L}}{10^3~\mathrm{mL}} \right )} \\[2ex] &= 3.25768~M \\[2ex] &= 3.258~M \end{align*}\]

The concentration of the premade solution is too high.

Part B

Use the dilution equation to find the volume of stock solution needed. Be sure to use the unrounded result from Part A.

\[\begin{align*} M_1V_1 &= M_2V_2 \\[2ex] V_1 &= \dfrac{M_2V_2}{M_1} \\[2ex] &= \dfrac{\left ( 1.123~\mathrm{mol~L^{-1}} \right ) \left ( 236.43~\mathrm{mL} \right )}{3.25768~M} \\[2ex] &= 81.50~\mathrm{mL} \end{align*}\]

Part C

The final volume of the correct solution is said to be 236.43 mL. Simply subtract the volume of stock solution to determine how much water is needed for the dilution.

\[\begin{align*} V_{\mathrm{water}} &= V_{\mathrm{total}} - V_{\mathrm{stock}} \\[2ex] &= 236.43~\mathrm{mL} - 81.50~\mathrm{mL} \\[2ex] &= 154.93~\mathrm{mL} \end{align*}\]

Part D

Find the mass (in g) of glycerine in a 236.43 mL 1.123 M glycerine solution.

\[\begin{align*} m_{\mathrm{glycerine}} &= MV \\[2ex] &= \left ( \dfrac{1.123~\mathrm{mol}}{\mathrm{L}} \right ) \left ( \dfrac{236.43~\mathrm{mL}}{} \right ) \left ( \dfrac{\mathrm{L}}{10^3~\mathrm{mL}}\right ) \left ( \dfrac{92.09~\mathrm{g}}{\mathrm{mol}} \right ) \\[2ex] &= 24.45~\mathrm{g} \end{align*}\]

Practice – Nomenclature


Give the correct name or formula for each of the following:

1

tin(II) chloride

2

Fe2O3

3

Hg2Cl2

4

potassium fluoride

5

CoCl3

6

hydrochloric acid

7

Cl2O3

8

sodium chloride

9

trisulfur dinitride

10

HF

11

CuCO3

12

CoSO4·6H2O

13

copper(II) hydroxide

14

sodium phosphate

15

magnesium hydroxide

16

lithium chromate

17

sodium hypochlorite

18

ammonium chromate

Solution

1

tin(II) chloride

SnCl2

2

Fe2O3

iron(III) oxide

3

Hg2Cl2

mercury(I) chloride

4

potassium fluoride

KF

5

CoCl3

cobalt(III) chloride

6

hydrochloric acid

HCl(aq)

7

Cl2O3

dichlorine trioxide

8

sodium chloride

NaCl

9

trisulfur dinitride

S3N2

10

HF

hydrogen fluoride

11

CuCO3

copper(II) carbonate

12

CoSO4·6H2O

cobalt(II) sulfate hexahydrate

13

copper(II) hydroxide

Cu(OH)2

14

sodium phosphate

Na3PO4

15

magnesium hydroxide

Mg(OH)2

16

lithium chromate

Li2CrO4

17

sodium hypochlorite

NaOCl

18

ammonium chromate

(NH4)2CrO4

Practice – Reaction Yield


Steam reforming of methane (methane = CH4) is the most important industrial process for the production of hydrogen gas, represented by the following balanced reaction:
     H2O(g) + CH4(g) → CO(g) + 3H2(g)
The United States produces around 9.0×106 tons of hydrogen gas (H2) per year using this process (1 ton = 907 kg). The yield of the process is 65%. How much methane (in kg) is consumed in this process per year?

Solution

Determine the mass of H2 produced per year in kg.

\[\begin{align*} m_{\mathrm{H_2}} &= \left ( \dfrac{9.0\times 10^{6}~\mathrm{tons}}{} \right ) \left ( \dfrac{907~\mathrm{kg}}{1~\mathrm{ton}} \right ) \\[2ex] &= 8.163\times 10^{9}~\mathrm{kg} \end{align*}\]

The problem states that the reaction is only 65% efficient (i.e. the actual yield of the reaction is 65%). We must determine the yield of the reaction as if it were 100% efficient (i.e. theoretical yield) in order to determine the amount of CH4 that went into the process.

\[\begin{align*} 8.163\times 10^{9}~\mathrm{kg} \left ( \dfrac{100}{65} \right ) &= 1.25585\times 10^{10}~\mathrm{kg} \end{align*}\]

Determine the mass (in kg) of CH4 required to make this much H2 per year.

\[\begin{align*} m_{\mathrm{CH_4}} &= \left ( \dfrac{1.25585\times 10^{10}~\mathrm{kg~H_2}}{} \right ) \left ( \dfrac{10^3~\mathrm{g}}{\mathrm{kg}} \right ) \left ( \dfrac{1~\mathrm{mol~H_2}}{2.02~\mathrm{g}} \right ) \left ( \dfrac{1~\mathrm{mol~CH_4}}{3~\mathrm{mol~H_2}} \right ) \left ( \dfrac{16.04~\mathrm{g}}{1~\mathrm{mol~CH_4}} \right ) \left ( \dfrac{\mathrm{kg}}{10^3~\mathrm{g}} \right ) \\[2ex] &= 3.324\times 10^{10}~\mathrm{kg} \\[2ex] &= 3.3\times 10^{10}~\mathrm{kg} \end{align*}\]

or more compactly using kg kmol–1

\[\begin{align*} m_{\mathrm{CH_4}} &= \left ( \dfrac{1.25585\times 10^{10}~\mathrm{kg~H_2}}{} \right ) \left ( \dfrac{1~\mathrm{kmol~H_2}}{2.02~\mathrm{kg}} \right ) \left ( \dfrac{1~\mathrm{kmol~CH_4}}{3~\mathrm{kmol~H_2}} \right ) \left ( \dfrac{16.04~\mathrm{kg}}{1~\mathrm{kmol~CH_4}} \right ) \\[2ex] &= 3.324\times 10^{10}~\mathrm{kg} \\[2ex] &= 3.3\times 10^{10}~\mathrm{kg} \end{align*}\]

Practice – Reaction Yield


A student combines 23 mL of 0.114 M aqueous aluminum sulfate and 6.75 mL of 0.89 M aqueous potassium hydroxide. A double-displacement reaction occurs. Assuming 100% yield, what mass (in g) of solid aluminum hydroxide is formed?

Solution

Write a balanced chemical equation for this double-displacement reaction.

\[\mathrm{Al_2(SO_4)_3}(aq) + 6\mathrm{KOH}(aq) \longrightarrow 2\mathrm{Al(OH)_3}(s) + 3\mathrm{K_2SO_4}(aq)\] Determine the number of mol of each reactant.

\[\begin{align*} n_{\mathrm{Al_2(SO_4)_3}} &= \left ( \dfrac{23~\mathrm{mL}}{} \right ) \left ( \dfrac{\mathrm{L}}{10^3~\mathrm{mL}} \right ) \left ( \dfrac{0.114~\mathrm{mol}}{\mathrm{L}} \right ) \\[2ex] &= 0.002622~\mathrm{mol} \\[4ex] n_{\mathrm{K(OH)_3}} &= \left ( \dfrac{6.75~\mathrm{mL}}{} \right ) \left ( \dfrac{\mathrm{L}}{10^3~\mathrm{mL}} \right ) \left ( \dfrac{0.89~\mathrm{mol}}{\mathrm{L}} \right ) \\[2ex] &= 0.0060075~\mathrm{mol} \\[4ex] \end{align*}\]

Identify the limiting reactant by determining the theoretical yield of a product for each reactant. This process assumes the other reactants are in excess.

Yield for Al2(SO4)3

\[\begin{align*} n_{\mathrm{Al(OH)_3}} &= \left ( \dfrac{0.002622~\mathrm{mol~Al_2(SO_4)_3}}{} \right )+ \left ( \dfrac{2~\mathrm{mol~Al(OH)_3}}{1~\mathrm{mol~Al_2(SO_4)_3}} \right ) \\[2ex] &= 0.40908~\mathrm{mol} \end{align*}\]

Yield for KOH

\[\begin{align*} n_{\mathrm{Al(OH)_3}} &= \left ( \dfrac{0.0060075~\mathrm{mol~KOH}}{} \right )+ \left ( \dfrac{2~\mathrm{mol~Al(OH)_3}}{6~\mathrm{mol~KOH}} \right ) \\[2ex] &= 0.0020025~\mathrm{mol} \end{align*}\]

KOH is the limiting reactant.

Determine the mass of Al(OH)3 that can be made.

\[\begin{align*} m_{\mathrm{Al(OH)_3}} &= \left ( \dfrac{0.0020025~\mathrm{mol~Al_2(SO_4)_3}}{} \right ) \left ( \dfrac{78.01~\mathrm{g}}{\mathrm{mol}} \right ) \\[2ex] &= 0.16~\mathrm{g} \end{align*}\]

Practice – Oxidation Numbers


Consider each of the compounds below. Which underlined element has the largest (in the positive direction) oxidation number?

  1. MgO2
  2. CH4
  3. F2
  4. S2–
  5. NH4Cl
Solution

The oxidation state for each underlined element is as follows:

  1. –2
  2. –4
  3. 0
  4. –2
  5. –3

C is the correct answer.

Practice – Ionic Equations


Which of the following statements is incorrect?

  1. AgNO3, Hg2(NO3)3, and Pb(NO3)2 are soluble.
  2. In the reaction between MgSO4 and CaI2, Mg2+ is a spectator ion.
  3. The net ionic equation for the reaction of H2CO3 and NaOH is H+ + OH → H2O.
  4. Hydrofluoric acid is a weak acid.
  5. A proton and H+ represent to the same thing.
Solution

Answer: C

The net ionic equation shown is for a strong acid reacting with a strong base. Here, a weak acid reacts with a strong base. The net ionic reaction should be

     H2CO3(aq) + 2OH(aq) → 2H2O(l) + CO32–(aq)

Practice – Oxidation-Reduction Reactions


In a typical combustion reaction, what happens to oxygen?

  1. It is oxidized
  2. It is reduced
  3. It is both oxidized and reduced
  4. It is neither oxidized or reduced
  5. It is impossible to say from the given information
Solution

Answer: B

Here is a simple combustion reaction involving methane.

     CH4 + 2O2 → CO2 + 2H2O

Here, oxygen in O2 has an oxidation state 0. Oxygen in CO2 has an oxidation state of –2. Oxygen in H2O has an oxidation state of –2. Therefore, oxygen is reduced in a combustion reaction.

Practice – Chemical Formulas


A sample of caffeine is found to consist of 17.77 g carbon, 1.86 g hydrogen, 10.04 g nitrogen, and 5.92 g oxygen. Given that the molar mass of caffeine is about 194 g mol–1, what is the molecular formula of caffeine?

Solution

Find the mol of each element.

\[\begin{align*} n_{\mathrm{C}} &= \left ( \dfrac{17.77~\mathrm{g~C}}{} \right ) \left ( \dfrac{\mathrm{mol}}{12.01~\mathrm{g}} \right ) = 1.4796~\mathrm{mol} \\[2ex] n_{\mathrm{H}} &= \left ( \dfrac{1.86~\mathrm{g~H}}{} \right ) \left ( \dfrac{\mathrm{mol}}{1.01~\mathrm{g}} \right ) = 1.8416~\mathrm{mol} \\[2ex] n_{\mathrm{N}} &= \left ( \dfrac{10.04~\mathrm{g~N}}{} \right ) \left ( \dfrac{\mathrm{mol}}{14.01~\mathrm{g}} \right ) = 0.7166~\mathrm{mol} \\[2ex] n_{\mathrm{O}} &= \left ( \dfrac{5.92~\mathrm{g~N}}{} \right ) \left ( \dfrac{\mathrm{mol}}{16.00~\mathrm{g}} \right ) = 0.3700~\mathrm{mol} \\[2ex] \end{align*}\]

Find the ratio of the molar mass of caffeine to the masses of the collected elements.

\[\begin{align*} \dfrac{194~\mathrm{g~mol^{-1}}}{\left ( 17.77~\mathrm{g} + 1.86 ~\mathrm{g} + 10.04 ~\mathrm{g} + 5.92~\mathrm{g} \right )} = 5.451~\mathrm{mol^{-1}} \end{align*}\]

Multiply the moles of each element by the calculated ratio.

\[\begin{align*} \#~\mathrm{C} &= 5.451~\mathrm{mol^{-1}} \times 1.4796~\mathrm{mol} \approx 8 \\[2ex] \#~\mathrm{H} &= 5.451~\mathrm{mol^{-1}} \times 1.8416~\mathrm{mol} \approx 10 \\[2ex] \#~\mathrm{N} &= 5.451~\mathrm{mol^{-1}} \times 0.7166~\mathrm{mol} \approx 4 \\[2ex] \#~\mathrm{O} &= 5.451~\mathrm{mol^{-1}} \times 0.3700~\mathrm{mol} \approx 2\\[2ex] \end{align*}\]

Write the molecular formula.

\[\begin{align*} \mathrm{C}_8\mathrm{H}_{10}\mathrm{N}_4\mathrm{O}_2 \end{align*}\]

Practice – Acid-Base Reaction


A sample of 40.25 mL hydroiodic acid requires a 19.20 mL 3.14 M calcium hydroxide solution to neutralize it. What is the concentration (in M) of the hydroiodic acid solution?

Solution

This neutralization reaction involves a strong acid and a strong base. Neutralization occurs when the hydronium ions supplied by the strong acid (HI) completely reacts with the hydroxide ions supplied by the strong base (Ca(OH)2).

Write out the dissociation of aqueous calcium hydroxide

\[\begin{align*} \mathrm{Ca(OH)_2}(aq) \longrightarrow \mathrm{Ca^{2+}}(aq) + \mathrm{OH^-}(aq) \end{align*}\]

Determine the moles of hydroxide ions in the strong base solution.

\[\begin{align*} n_{\mathrm{OH^-}} &= \left ( \dfrac{3.14~\mathrm{mol~Ca(OH)_2}}{\mathrm{L}} \right ) \left ( \dfrac{19.20~\mathrm{mL}}{} \right ) \left ( \dfrac{\mathrm{L}}{10^3~\mathrm{mL}} \right ) \left ( \dfrac{2~\mathrm{mol~OH^-}}{\mathrm{mol~Ca(OH)_2}} \right )\\[2ex] &= 0.120576~\mathrm{mol} \end{align*}\]

For complete neutralization,

\[n_{\mathrm{H_3O^+}} = n_{\mathrm{OH^-}}\]

meaning there was 0.120576 mol of H3O+ present.

Since HI is a strong acid,

\[n_{\mathrm{HI}} = n_{\mathrm{H_3O^+}}\] meaning there was initially 0.120576 mol of HI.

Determine the concentration of HI.

\[\begin{align*} c_{\mathrm{HI}} &= \left ( \dfrac{0.120576~\mathrm{mol}}{40.25~\mathrm{mL}} \right ) \left ( \dfrac{10^3~\mathrm{mL}}{\mathrm{L}} \right ) \\[2ex] &= 2.996~M \\[2ex] &\approx 3.00~M \end{align*}\]







Practice – VSEPR


Which of the following molecular geometries can be nonpolar?

  1. Bent
  2. Trigonal pyramidal
  3. Seesaw
  4. T-shaped
  5. Trigonal planar
Solution

Answer: E

Practice – Bond Enthalpies


Given the bond enthapies (in kJ mol–1) for H–H, O=O, and H–O are 436.4, 498.7, and 460.0, respectively, what is the bond enthalpy (in kJ mol–1) for the reaction of H2 and O2 from H2?

  1. –15.1
  2. 15.1
  3. 468.5
  4. –468.5
  5. 0
Solution

Answer: D

Write a balanced reaction.

\[\mathrm{2H_2O} \longrightarrow \mathrm{2H_2} + \mathrm{O_2}\]

  1. H2 has one H–H bond (436.4 kJ mol–1 each)
  2. O2 has one O=O bond (498.7 kJ mol–1 each)
  3. H2O has two H–O bonds (460.0 kJ mol–1 each)

Determine the enthalpy of reaction.

\[\begin{align*} \Delta H_{\mathrm{rxn}} &= \Sigma \left (\Delta H_{\mathrm{products}} \right ) - ~~\Sigma \left (\Delta H_{\mathrm{reactants}} \right )\\[2ex] &= \left [ \left ( 2 \times \Delta H (\mathrm{H-H}) \right ) + \left ( 1 \times \Delta H (\mathrm{O=O}) \right ) \right ] - \\ &\phantom{=} ~~ \left [ \left ( 4 \times \Delta H (\mathrm{H-O}) \right ) \right ] \\[2ex] &= \left [ \left ( 2 \times 436.4 \right ) + \left ( 1 \times 498.7 \right ) \right ] \\ &\phantom{=} ~~ \left [ \left ( 4 \times 460.0 \right ) \right ] \\[2ex] &= -468.5~\mathrm{kJ~mol^{-1}} \end{align*}\]

Practice – VSEPR


Which bond angle (in deg) would be the most reasonable between the two hydrogen atoms in CH2O?

  1. 109.5
  2. 116
  3. 120
  4. 122
  5. 180
Solution

Answer: B

Practice – Gases


Choose the false statement.

  1. Molecular speed has a broader range at high temperatures than at low temperatures
  2. Heavier molecules have lower root-mean-square speed than molecules with lower molecular mass.
  3. Ideal gas molecules do not exert attractive or repulsive forces on one another.
  4. The constant, R, used in the formula for root-mean-square is the same constant, R, used in the ideal gas equation, just with different units.
  5. all statemenmts are true
Solution

Answer: E

Practice – Orbitals


Choose the correct statement.

  1. When two s orbitals overlap side to side, a pi bond is formed.
  2. When two p orbitals overlap head to head, a sigma bond is formed.
  3. The electron density of a pi bond lies along the axis between two atoms.
  4. Only p orbital overlap can form pi bonds.
  5. Only two of the three p orbitals of a given subshell in a given atom lie perpendicular to each other.
Solution

Answer: B

Practice – Intermolecular Forces


Rank the following compounds from lowest to highest expected boiling point: HF, F2, LiF

  1. HF, F2, LiF
  2. F2, HF, LiF
  3. LiF, HF, F2
  4. HF, LiF, F2
  5. F2, LiF, HF
Solution

Answer: B

Practice – Gases


6.0 mol NO and 8.0 mol O2 are combined in a sealed 13.0 L container and react according to the given reaction:
     NO + 2O2 → 2NO2
Assuming 100% yield, what volume (in L) of gas is in the container following the reaction?

  1. 6.0
  2. 8.0
  3. 10.0
  4. 13.0
  5. 14.0
Solution

Answer: D

Practice – Lewis Structures


How many lone pairs of electrons are on the central atom in IF2?

  1. 0
  2. 1
  3. 2
  4. 3
  5. 4
Solution

Answer: D

Practice – Valence Bond Theory


How many σ bonds, π bonds, and lone electron pairs are there in the following molecule?

  1. 6 σ bonds, 2 π bonds, 0 lone pairs
  2. 15 σ bonds, 2 π bonds, 0 lone pairs
  3. 16 σ bonds, 1 π bonds, 2 lone pairs
  4. 15 σ bonds, 2 π bonds, 3 lone pairs
  5. 6 σ bonds, 2 π bonds, 3 lone pairs
Solution

Answer: D

Practice – VSEPR


Give the sum of the number of electron domains on the central atom in each of the following molecules: BH3, NH3, SO2, H2O

  1. 10
  2. 11
  3. 12
  4. 13
  5. 14
Solution

Answer: E

BH3 – 3 domains

NH3 – 4 domains

SO2 – 3 domains

H2O – 4 domains

Total

\[3+4+3+4 = 14\]

Practice – Vapor Pressure


A 42.5 mL sample of NO2 gas was collected over water. The atmospheric pressure in the room at the time was 0.9980 atm and the water was 30.0 °C. Given that the vapor pressure of water at 20 °C, 25 °C, and 30 °C is 17.5, 23.8, and 31.8 torr, respectively, how many grams of NO2 gas were collected?

  1. 0.00165
  2. 0.0165
  3. 0.0750
  4. 0.0760
  5. 0.750
Solution

Answer: C

Convert the pressure of the water at 30 °C from torr to atm.

\[\begin{align*} P_{\mathrm{H_2O}} &= \left ( \dfrac{31.8~\mathrm{torr}}{} \right ) \left ( \dfrac{1~\mathrm{atm}}{760~\mathrm{torr}} \right ) \\[2ex] &= 0.0418~\mathrm{atm} \end{align*}\]

Find the pressure of NO2.

\[\begin{align*} P_{\mathrm{tot}} &= P_{\mathrm{NO_2}} + P_{\mathrm{H_2O}} \rightarrow \\[2ex] P_{\mathrm{NO_2}} &= P_{\mathrm{tot}} - P_{\mathrm{H_2O}} \\[2ex] &= 0.9980~\mathrm{atm} - 0.0418~\mathrm{atm} \\[2ex] &= 0.9562~\mathrm{atm} \end{align*}\]

Find the amount (in mol) of NO2.

\[\begin{align*} PV &= nRT \\[2ex] n_{\mathrm{NO_2}} &= \dfrac{PV}{RT} \\[2ex] &= \dfrac{(0.9562~\mathrm{atm})(0.0425~\mathrm{L})}{(0.08206~\mathrm{L~atm~mol^{-1}~K^{-1}})(303.15~\mathrm{K})}\\[2ex] &= 0.00163~\mathrm{mol} \end{align*}\]

Find the mass (in g) of NO2.

\[\begin{align*} m_{\mathrm{NO_2}} &= \left ( \dfrac{0.00163~\mathrm{mol}}{} \right ) \left ( \dfrac{46.01~\mathrm{g}}{\mathrm{mol}} \right ) \\[2ex] &= 0.0750~\mathrm{g} \end{align*}\]

Practice – Electronegativity


In which of the following molecules would the central atom be considered partially negative?

  1. PCl5
  2. AlH3
  3. CO2
  4. all of the above
  5. none of the above
Solution

Answer: E

PCl

P is partially positive because Cl is more electronegative.

AlH3 – Central atom has a partial positive charge

Al is partially positive because H is more electronegative.

CO2 – Central atom has a partial positive charge

C is partially positive because O is more electronegative.

Practice – Ideal Gas


A balloon contains a mixture of 1.00 mol of each gas: N2, O2, H2, and H2O. The balloon has a volume of 3.00 L and is at 25.0 °C. Treating the gas as an ideal gas, what pressure (in atm) does the H2 exert?

  1. 1.02
  2. 2.04
  3. 4.08
  4. 8.16
  5. 32.6
Solution

Answer: D

Use the ideal gas law to solve for the pressure of H2.

\[\begin{align*} PV &= nRT \\[2ex] P_{\mathrm{H_2}} &= \dfrac{nRT}{V} \\[2ex] &= \dfrac{(1.00~\mathrm{mol}) (0.08206~\mathrm{L~atm~mol^{-1}~K^{-1}}) (298.15~\mathrm{K})} {3.00~\mathrm{L}} \\[2ex] &= 8.16~\mathrm{atm} \end{align*}\]

Practice – VSEPR


Which of the following molecular geometries can result in a polar molecule?

  1. linear
  2. square pyramidal
  3. bent
  4. octahedral
  5. all of the above
Solution

Answer: E

Any molecular geometry can result in a polar molecule.

Practice – Valence Bond Theory


Which of the following compounds has an sp2 hybridized nitrogen?

  1. NH3
  2. CN
  3. N2
  4. NO3
  5. none of these
Solution

Answer: D

NH3

N is sp3 hybridized.

CN

N is sp hybridized.

N2

N is sp hybridized.

NO3

N is sp2 hybridized

Practice – VSEPR


An s orbital and two p orbitals are hybridized. Choose the most correct of the following statements.

  1. Exactly 1 sp2 orbtial is formed
  2. Three sp orbitals are formed
  3. The molecular geometry around the atom with the hybridized orbitals is trigonal planar
  4. Each hybridized orbital has two lobes, one much larger than the other
  5. Each hybridized orbital may only form pi bonds
Solution

Answer: D

Practice – VSEPR


A certain molecule contains 5 atoms and has a tetrahedral molecular geometry. Two of the four terminal atoms are of one type and have an electronegativity of 3.2 The last two terminal atoms are of the second type but also have an electronegativity of 3.2. Is the molecule polar?

  1. Yes, because there are different terminal atoms
  2. No, because all of the terminal atoms have the same electronegativity
  3. Not enough information: it depends on the electronegativity of the central atom
  4. Not enough information, it depends on which specific atoms are involved
Solution

Answer: B

If the terminal atoms in a tetrahedral molecule have the same electronegativity, the molecule will not be polar (i.e. it will not have a dipole).

Practice – Electron Configuration


Which of the following pairs is not isoelectronic?

  1. F and Mg2+
  2. Ca and Ti2+
  3. S2– and Ar
  4. Cr and Mn+
  5. all of the above are isoelectronic pairs
Solution

Answer: B

Practice – Electron Configuration


Elements A, B, and C have electronegativities of 3.5, 2.5, and 0.2, respectively. Which of the following bonds would be considered polar covalent?

  1. A–A
  2. A–B
  3. A–C
  4. B–C
  5. none of the above
Solution

Answer: B

Recall that bonds can be classified by the difference in the electronegativities of the atoms involved in that bond.

  1. < 0.5 → pure covalent
  2. 0.5 to 2.0 → polar covalent
  3. > 2.0 → ionic

Therefore,

  1. A–A is pure covalent (nonpolar): 3.5 - 3.5 = 0
  2. A–B is polar covalent: 3.5 - 2.5 = 1.0
  3. A–C is ionic: 3.5 - 0.2 = 3.3
  4. B–C is ionic: 2.5 - 0.2 = 2.3

Practice – VSEPR


On the molecule CH2Cl2, which direction does the dipole point?

  1. Towards the hydrogens (away from the chlorines)
  2. Towards the chlorines (away from the hydrogens)
  3. Towards the carbon
  4. Towards the lone pair
  5. There is no dipole
Solution

Answer: B

CH2Cl2 has a tetrahedral molecular geometry. The gray arrows denote the direction of the polar bonds and the blue arrow denotes the direction of the dipole.

Practice – Intermolecular Forces


Which of the following molecules would you expect to have the lowest boiling point?

  1. N2
  2. O2
  3. F2
  4. Cl2
  5. Br2
Solution

Answer: A

The given molecules are homonuclear diatomics and therefore have no dipole. These molecules only exhibit dispersion forces. The smallest molecule, N2 is expected to have the lowest boiling point. The normal boiling points for each are given below:

  1. N2: –195.8 °C
  2. O2: –183 °C
  3. F2: –188 °C
  4. Cl2: –34.6 °C
  5. Br2: 58.8 °C

Practice – Molar Mass of Ideal Gas


60.54 g of a sample of gas takes up 67.2 L at STP. What is the gas?

  1. H
  2. N2
  3. Ne
  4. Ar
  5. not enough information
Solution

Answer: C

Recall that 1 mol of an ideal gas at STP occupies 22.4 L of space (shown below):

\[\begin{align*} PV &= nRT \rightarrow \\[2ex] V &= \dfrac{nRT}{P} \\[2ex] &= \dfrac{(1~\mathrm{mol})(0.08206~\mathrm{L~atm~mol^{-1}~K^{-1}})(273.15~\mathrm{K})}{1~\mathrm{atm}} \\[2ex] &= 22.4~\mathrm{L} \end{align*}\]

Determine how many moles of gas is present using this information.

\[\begin{align*} n_{\mathrm{gas}} &= \left ( \dfrac{67.2~\mathrm{L}}{} \right ) \left ( \dfrac{1~\mathrm{mol}}{22.4~\mathrm{L}} \right ) \\[2ex] &= 3.00~\mathrm{mol} \end{align*}\]

Use the mass of the gas to determine the molar mass and identity of the gas.

\[\begin{align*} M_{\mathrm{gas}} &= \dfrac{60.54~\mathrm{g}}{3~\mathrm{mol}} \\[2ex] &= 20.18~\mathrm{g~mol^{-1}} \end{align*}\]

The molar mass of Ne is 20.18 g mol–1.

Practice – Charge Notation


Which of the following notations is incorrect?

  1. Li+Cl
  2. Hδ+Clδ–
  3. C+O
  4. all of the above are incorrect
  5. only (b) and (c) are correct
Solution

Answer: C

Carbon monoxide, CO, is not ionic and the notation should only use partial (δ) charges.

Practice – VSEPR


Which of the following molecular geometries is incorrect?

  1. AlCl3: trigonal planar
  2. SO42–: tetrahedral
  3. CO2: linear
  4. O3: linear
  5. NH3: trigonal pyramidal
Solution

Answer: D

Given below are the Lewis structures for each molecule.

AlCl3 – trigonal planar

SO42– – tetrahedral

CO2 – linear

O3 – bent

NH3 – trigonal pyramidal

Practice – Ideal Gas


How much more dense (in g L–1) is O2 gas than He gas at room temperature (25.000 °C) and exactly 1 atm of pressure?

  1. 0.164
  2. 0.490
  3. 0.654
  4. 1.144
  5. 1.308
Solution

Answer: D

Begin with the ideal gas and rearrange. Note that M is molar mass and M × n/V is density.

\[\begin{align*} PV &= nRT \\[2ex] \dfrac{n}{V} &= \dfrac{P}{RT} \\[2ex] \dfrac{nM}{V} &= \dfrac{PM}{RT} \\[2ex] d &= \dfrac{PM}{RT} \end{align*}\]

Use the equation obtained above to determine the density of each gas.

\[\begin{align*} d_{\mathrm{O_2}} &= \dfrac{PM}{RT} \\[2ex] &= \dfrac{(1~\mathrm{atm})(32.00~\mathrm{g~mol^{-1}})} {(0.08206~\mathrm{L~atm~mol^{-1}~K^{-1}})(298.15~\mathrm{K})}\\[2ex] &= 1.308~\mathrm{g~L^{-1}}\\[4ex] d_{\mathrm{He}} &= \dfrac{PM}{RT} \\[2ex] &= \dfrac{(1~\mathrm{atm})(4.003~\mathrm{g~mol^{-1}})} {(0.08206~\mathrm{L~atm~mol^{-1}~K^{-1}})(298.15~\mathrm{K})}\\[2ex] &= 0.164~\mathrm{g~L^{-1}} \end{align*}\]

Take the difference of the two densities.

\[\begin{align*} \Delta d &= d_{\mathrm{O_2}} - d_{\mathrm{He}} \\[2ex] &= \left ( 1.308 - 0.164 \right )~\mathrm{g~L^{-1}} \\[2ex] &= 1.144~\mathrm{g~L^{-1}} \end{align*}\]

Practice – Valence Bond Theory


How many σ bonds and how many π bonds are in carbonyl sulfide, COS?

  1. 0 σ bonds, 2 π bonds
  2. 1 σ bonds, 3 π bonds
  3. 2 σ bonds, 0 π bonds
  4. 2 σ bonds, 2 π bonds
  5. 4 σ bonds, 0 π bonds
Solution

Answer: D

COS has two double bonds. Each double bond consists of one σ and one π bond.

Practice – Ideal Gas


A barometer in a sealed room reads 735.0 torr. A thermometer in the same room gives the air temperature as 18.30 °C. If the temperature in the room is raised by 10.20 °C, what would the new pressure be (in atm)?

  1. 0.539
  2. 1.001
  3. 1.506
  4. 761
  5. 1140
Solution

Answer: B

Use Guy-Lussac’s Law to determine the new pressure at a different temperature and convert torr to atm (1 atm = 760 torr).

\[\begin{align*} \dfrac{P_1}{T_1} &= \dfrac{P_2}{T_2} \rightarrow \\[2ex] P_1 &= \dfrac{P_1T_2}{T_1} \\[2ex] &= \left [ \dfrac{(735.0~\mathrm{torr})(301.65~\mathrm{K})}{291.45~\mathrm{K}} \right ] \left ( \dfrac{1~\mathrm{atm}}{760~\mathrm{torr}} \right ) \\[2ex] &= 1.001~\mathrm{atm} \end{align*}\]

Practice – VSEPR


Which of the following compounds could never be polar?

  1. A compound with the same electron domain geometry and molecular geometry
  2. A compound with no lone pairs of electrons
  3. A compound with no polar bonds and no lone pairs
  4. A compound made up of two atoms of the same type bonded to a central atom of a different type
  5. A compound with an even number of lone electron pairs
Solution

Answer: C

Both (a) and (b) could be polar if composed of more than one element. Option (d) could be polar (e.g. water). Option (e) is not correct because something like nitrogen oxide (NO) contains an even number of lone electron pairs and is polar. Option (c) is the correct answer.

Practice – Ideal Gas Yield


A 0.650 g sample of AlBr3 is reacted with 0.190 L of Cl2 gas at STP. What is the volume (in L) of Br2 produced?
     2AlBr3(s) + 3Cl2(g) → 2AlCl3(s) + 3Br2(g)

  1. 0.00244
  2. 0.00366
  3. 0.00482
  4. 0.0820
  5. 0.190
Solution

Answer: D

Determine the moles of each reactant. Note that when determining the moles of Cl2(g), we use 22.4 L mol–1 since the gas is at STP.

\[\begin{align*} n_{\mathrm{AlBr_3}} &= \left ( \dfrac{0.650~\mathrm{g}}{} \right ) \left ( \dfrac{1~\mathrm{mol}}{266.68~\mathrm{g}} \right )\\[2ex] &= 0.00244~\mathrm{mol} \\[4ex] n_{\mathrm{Cl_2}} &= \left ( \dfrac{0.190~\mathrm{L}}{} \right ) \left ( \dfrac{1~\mathrm{mol}}{22.4~\mathrm{L}} \right )\\[2ex] &= 0.00848~\mathrm{mol} \\[4ex] \end{align*}\]

Determine the limiting reactant.

\[\begin{align*} n_{\mathrm{Br_2}} &= \left ( \dfrac{0.00244~\mathrm{mol~AlBr_3}}{} \right ) \left ( \dfrac{3~\mathrm{mol~Br_2}}{3~\mathrm{mol~AlBr_3}} \right ) \\[2ex] &= 0.00366~\mathrm{mol} \\[4ex] n_{\mathrm{Br_2}} &= \left ( \dfrac{0.00848~\mathrm{mol~Cl_2}}{} \right ) \left ( \dfrac{3~\mathrm{mol~Br_2}}{3~\mathrm{mol~Cl_2}} \right ) \\[2ex] &= 0.00848~\mathrm{mol} \end{align*}\]

AlBr3 is the limiting reactant.

Use the ideal gas law to determine the volume (in L) of Br2(g) produced.

\[\begin{align*} PV &= nRT \rightarrow \\[2ex] V &= \dfrac{nRT}{V} \\[2ex] &= \dfrac{(0.00366~\mathrm{mol})(0.08206~\mathrm{L~atm~mol^{-1}~K^{-1}})(273.15~\mathrm{K})} {1~\mathrm{atm}} \\[2ex] &= 0.0820~\mathrm{L} \end{align*}\]

Practice – Periodic Trends


Which of the following statements are true?

I. Atoms with high electronegativity form negative ions more often than positive ones
II. In general, electronegativity increases from left to right across a period
III. In general, electronegativity decreases from top to bottom down a column
IV. In general, noble gases have higher electronegativity than elements in other groups

  1. Only I
  2. I and II
  3. I, II, and III
  4. II, III, and IV
  5. All of these are true
Solution

Answer: C

Practice – Ideal Gas


A weather balloon is filled under a pressure of 1 atm to a volume of 270 ft3 and rises through the atmosphere until it reaches a volume of 22,449 ft3 and bursts. What pressure (in atm) was the balloon under when it burst? Assume constant temperature.

  1. 1.65×10–7
  2. 0.0120
  3. 0.0360
  4. 83.1
  5. 249
Solution

Answer: B

Use Boyle’s Law to determine the new pressure

\[\begin{align*} P_1V_1 &= P_2V_2 \rightarrow \\[2ex] P_2 &= \dfrac{P_1V_1}{V_2} \\[2ex] &= \dfrac{(1~\mathrm{atm})(270~\mathrm{ft^3})} {22449~\mathrm{ft^3}} \\[2ex] &= 0.0120~\mathrm{atm} \end{align*}\]

Practice – Ideal Gas


Choose the true statement.

  1. The pressure a gas exerts is dependent on the other gases in the mixture.
  2. When 3.0 L of N2 and 4.0 L of Ar are combined in a 8.0 L container, the volume of the mixture is 7.0 L.
  3. The law of partial pressures is named after Boyle.
  4. Mole fractions have units of moles.
  5. Mole fraction is equivalent to partial pressure divided by total pressure.
Solution

Answer: E

Practice – Molecular Orbital Theory


Which of the following statements is false?

  1. Antibonding molecular orbitals arise from the destructive combination of atomic orbitals
  2. A bond order of 0 means that no bond will form between the two atoms in questions
  3. Each molecular orbital can hold 2 electrons with opposite spin
  4. Hund’s rule and the Pauli exclusion principle apply to molecular orbitals as well as atomic orbitals
  5. The π2p orbitals are higher in energy than the σ2p orbital for N2
Solution

Answer: E

Practice – VSEPR


Which direction would the dipole on CH2O point?

  1. There is no dipole moment
  2. Towards the oxygen
  3. Towards the carbon
  4. Towards a specific hydrogen
  5. Towards the hydrogens (away from the oxygen)
Solution

Answer: B

Practice – Bond Energy


Which of the following statements is true?

  1. Formation of ionic bonds releases a large amount of energy
  2. Lattice energy is the amount of energy required to convert a mole of ionic solid into the gas phase.
  3. Lattice energy increases as distance between charges decreases
  4. The magnitude of charges has no impact on lattice energy
  5. All of these statements are false
Solution

Answer: E

Practice – Ideal Gas Yield


3.0 L of H2 gas and 4.5 L of O2 gas are combined at constant temperature and pressure. They react according to the following equation:
     H2 + O2 → H2O
Assuming the reaction has a 100% yield, what volume (in L) of water vapor will form?

  1. 3.0
  2. 4.5
  3. 6.0
  4. 7.5
  5. 10.5
Solution

Answer: A

Use Avogadro’s law to determine the limiting reactant by calculating how much H2 would form from each reactant if reacted completely.

If we react all 3.0 L of H2, 3.0 L of H2O forms since 2 mol H2 → 2 mol H2O.

If we react all 4.5 L of O2, 9.0 L of H2O forms since 1 mol O2 → 2 mol H2O.

H2 is the limiting reactant so 3.0 L H2 forms.

Practice – Gases


Describe each of these situations:
I. On a space shuttle in orbit, oxygen gas escapes through a small hole in the side of a tank into space.
II. A sample of chlorine gas and a sample of xenon gas are released into a container in which they mix together.

  1. I: diffusion, II: effusion
  2. I: diffusion, II: diffusion
  3. I: effusion, II: effusion
  4. I: effusion, II: diffusion
  5. none of these are correct
Solution

Answer: D

Practice – Structure and Bonding


Select the correct statement.

  1. In real life, molecules switch between their different resonance structures very quickly
  2. A free radical is an electron in the excited state
  3. Dative bonds form between Lewis acids and Lewis bases
  4. Coordinate covalent bonds form between two atoms which have an electronegativitity difference of less than 0.5
  5. The Born-Haber Cycle is an application of Hess’s Law that breaks down the various thermochemical steps in the formation of solid ionic compounds.
Solution

Answer: C

Practice – Intermolecular Forces


Which of the following compounds is not matched to its most dominant intermolecular force?

  1. CH4: van der Waals
  2. HF: hydrogen bonding
  3. HCl dipole-dipole
  4. K2SO4: ion-ion
  5. MgCl: London dispersion forces
Solution

Answer: E

Practice – Gas Laws


What is the name of the law that states V1T1 = V2T2?

  1. Guy-Lussac’s Law
  2. Boyle’s Law
  3. Charles’ Law
  4. Avogadro’s Law
  5. Dalton’s Law
Solution

Answer: C

Practice – Gases


Arrange the following compounds in order of increasing root-mean-square speed: CO2, Kr, He, F2

  1. CO2, Kr, He, F2
  2. F2, He, Kr, CO2
  3. He, F2, CO2, Kr
  4. Kr, CO2, F2, He
  5. none of the above
Solution

Answer: D

Practice – Gases


Which of the following laws concern volume?

I. Avogadro’s Law II. Boyle’s Law III. Charles’ Law IV. Guy-Lussac’s Law

  1. Only II
  2. I, II, and III
  3. I, II, and IV
  4. II, III, and IV
  5. all of them
Solution

Answer: B

Practice – Molecular Orbital Theory


Use molecular orbital theory to determine how many σ bonds and how many π bonds are present in C2

  1. 1 σ bond, 0 π bonds
  2. 0 σ bond, 1 π bonds
  3. 1 σ bond, 1 π bonds
  4. 2 σ bond, 0 π bonds
  5. 0 σ bond, 2 π bonds
Solution

Answer: E

Practice – Ideal Gas


A sample of gas is in a sealed container. What happens to the absolute temperature if the volume is doubled and the pressure is halved?

  1. It is one fourth of what it was before
  2. It is one half of what it was before
  3. It is the same as it was before
  4. It is twice what it was before
  5. It is four times what it was before
Solution

Answer: C

Practice – Gases


Find the gas constant, R, in units of mL torr mol–1 K–1.

  1. 1.080×10–7
  2. 0.08206
  3. 2.782
  4. 2782
  5. 6.236×104
Solution

Answer: E

\[\begin{align*} R &= \left ( \dfrac{0.08206~\mathrm{L~atm}}{\mathrm{mol~K}} \right ) \left ( \dfrac{10^3~\mathrm{mL}}{1~\mathrm{L}} \right ) \left ( \dfrac{760~\mathrm{torr}}{1~\mathrm{atm}} \right ) \\[2ex] &= 62365.6~\mathrm{mL~torr~mol^{-1}~K^{-1}} \\[2ex] &= 6.236\times 10^{4}~\mathrm{mL~torr~mol^{-1}~K^{-1}} \end{align*}\]

Practice – Gases


Real gases behave most like ideal gases at

  1. high T and high P
  2. high T and low P
  3. low T and high P
  4. low T and low P
  5. all T and all P
Solution

Answer: B

Practice – Gases


Which of the following are inversely proportional?

  1. P and T
  2. P and n
  3. P and V
  4. V and T
  5. V and n
Solution

Answer: C

Practice – Gases


A particular gas has a density of 0.035 g mL–1 at STP. Assuming pressure is held constant, what will the volume (in L) of 8.0 g of the gas be if the temperature is increased to 25.0 °C?

  1. 0.035
  2. 0.21
  3. 0.23
  4. 0.25
  5. 3.5
Solution

Answer: D

Find the volume of the gas at STP.

\[\begin{align*} V_{\mathrm{gas}} &= \left ( \dfrac{8.0~\mathrm{g}}{} \right ) \left ( \dfrac{1~\mathrm{mL}}{0.035~\mathrm{g}} \right ) \left ( \dfrac{1~\mathrm{L}}{10^3~\mathrm{mL}} \right ) \\[2ex] &= 0.23~\mathrm{L} \end{align*}\]

Determine the new volume of the gas at 25 °C using Charles’ Law.

\[\begin{align*} \dfrac{V_1}{T_1} &= \dfrac{V_2}{T_2} \rightarrow \\[2ex] V_2 &= \dfrac{V_1T_2}{T_1} \\[2ex] &= \dfrac{(0.23~\mathrm{L})(298.15~\mathrm{K})}{273.15~\mathrm{K}} \\[2ex] &= 0.25~\mathrm{L} \end{align*}\]

Practice – Gases


How much faster will Ne effuse than Ar?

  1. ≈0.51 times as fast
  2. ≈ 0.71 times as fast
  3. They effuse about the same
  4. ≈ 1.41 times as fast
  5. ≈ 1.98 times as fast
Solution

Answer: D

\[\begin{align*} \dfrac{u_{\mathrm{rms}}(\mathrm{Ne})}{u_{\mathrm{rms}}(\mathrm{Ar})} = \sqrt{\dfrac{M_{\mathrm{Ar}}}{M_{\mathrm{Ne}}}} = \sqrt{\dfrac{39.95~\mathrm{g~mol^{-1}}}{20.18~\mathrm{g~mol^{-1}}}} = 1.41 \end{align*}\]

Practice – Gases


Which of these is not equivalent to 1 atm?

  1. 101.325 Pa
  2. 760 mmHg
  3. 760 torr
  4. 1.01325 N
  5. 14.7 psi
Solution

Answer: D

The Newton, N, is not a unit of pressure.

Practice – Gases


What is the density (in g mL–1) of iodine gas at STP?

  1. 0.01037
  2. 5.187
  3. 10.37
  4. 126.9
  5. 253.8
Solution

Answer: A

\[\begin{align*} d &= \dfrac{PM}{RT} \\[2ex] &= \left ( \dfrac{(1~\mathrm{atm})(2.538~\mathrm{g~mol^{-1}})} {(0.08206~\mathrm{L~atm~mol^{-1}~K^{-1}})(298.15~\mathrm{K})} \right ) \left ( \dfrac{\mathrm{L}}{10^3~\mathrm{mL}} \right ) \\[2ex] &= 0.01037~\mathrm{g~mL^{-1}} \end{align*}\]

Practice – Gases


A sealed 250 mL jar at 25 °C contains 3.20 g O2 gas and 1.40 g N2 gas. What is the total pressure (in atm) inside the jar?

  1. 0.150
  2. 4.60
  3. 4.89
  4. 9.79
  5. 14.7
Solution

Answer: E

Find the moles of each gas.

\[\begin{align*} n_{\mathrm{O_2}} &= \left ( \dfrac{3.20~\mathrm{g}}{} \right ) \left ( \dfrac{\mathrm{mol}}{32.00~\mathrm{g}} \right ) \\[2ex] &= 0.100~\mathrm{mol}\\[4ex] n_{\mathrm{N_2}} &= \left ( \dfrac{1.40~\mathrm{g}}{} \right ) \left ( \dfrac{\mathrm{mol}}{28.02~\mathrm{g}} \right ) \\[2ex] &= 0.0500~\mathrm{mol} \end{align*}\]

Find the pressure of each gas.

\[\begin{align*} P_{\mathrm{O_2}} &= \dfrac{nRT}{V} \\[2ex] &= \dfrac{(0.100~\mathrm{mol})(0.08206~\mathrm{L~atm~mol^{-1}~K^{-1}})(298.15~\mathrm{K})} {0.250~\mathrm{L}} \\[2ex] &= 9.79~\mathrm{atm}\\[4ex] P_{\mathrm{N_2}} &= \dfrac{nRT}{V} \\[2ex] &= \dfrac{(0.0500~\mathrm{mol})(0.08206~\mathrm{L~atm~mol^{-1}~K^{-1}})(298.15~\mathrm{K})} {0.250~\mathrm{L}} \\[2ex] &= 4.89~\mathrm{atm}\\[2ex] \end{align*}\]

Add the pressures together.

\[\begin{align*} P_{\mathrm{tot}} &= P_{\mathrm{O_2}} + P_{\mathrm{N_2}} \\[2ex] &= (9.79 + 4.89)~\mathrm{atm} \\[2ex] &= 14.68~\mathrm{atm} \end{align*}\]

Practice – Gases


Find the mole fraction of argon in a mixture of argon and xenon in which the total pressure is 4.0 atm and xenon has a partial pressure of 1.2 atm.

  1. 0.30
  2. 0.70
  3. 1.2
  4. 2.8
  5. 4.0
Solution

Answer: B

Find the pressure of argon.

\[\begin{align*} P_{\mathrm{Ar}} &= P_{\mathrm{tot}} - P_{\mathrm{Xe}} \\[2ex] &= (4.0 - 1.2)~\mathrm{atm} \\[2ex] &= 2.8~\mathrm{atm} \end{align*}\]

Find the mole fraction of argon.

\[\begin{align*} \chi_{\mathrm{Ar}} &= \dfrac{P_{\mathrm{Ar}}}{P_{\mathrm{tot}}} \\[2ex] &= \dfrac{2.8~\mathrm{atm}}{4.0~\mathrm{atm}} \\[2ex] &= 0.70 \end{align*}\]







Practice – Enthalpy and Heat Transfer


What is the ΔE (in J) of a system that releases 12.4 J of heat and does 4.2 J of work on the surroundings?

Solution

The system loses energy so q is negative. The system performs work on the surroundings so w is negative.

\[\begin{align*} \Delta E &= q + w \\ &= -12.4~\mathrm{J} + -4.2~\mathrm{J}\\ &= -16.6~\mathrm{J} \end{align*}\]

Practice – Specific Heat and Heat Transfer


How much heat (in kJ) is needed to raise the temperature of 200.0 g of water from 25.0 °C to 88.0 °C?

Solution

\[\begin{align*} q &= mc_l\Delta T \\ &= \left ( 200.0~\mathrm{g} \right ) \left ( 4.184~\mathrm{J~g^{-1}~^{\circ}C^{-1}} \right ) \left ( 88.0~^{\circ}\mathrm{C} - 25.0~^{\circ}\mathrm{C} \right ) \left ( \dfrac{\mathrm{kJ}}{10^3~\mathrm{J}} \right ) \\ &= 52.7~\mathrm{kJ} \end{align*}\]

Practice – Enthalpy of Formation


ΔH° for the given reaction is –1107 kJ.
     2Ba(s) + O2(g) → 2BaO(s)
How much heat (in kJ) is released when 5.75 g of Ba(s) reacts completely with oxygen to form BaO(s)?

Solution

\[\begin{align*} \Delta H &= \left ( \Delta H^{\circ} \right ) \left ( n_{\mathrm{Ba}} \right ) \\[2ex] &= \left ( \dfrac{-1107~\mathrm{kJ}}{2~\mathrm{mol~Ba}} \right ) \left ( \dfrac{5.75~\mathrm{g}}{} \right ) \left ( \dfrac{\mathrm{mol}}{137.33~\mathrm{g}} \right ) \\[2ex] &= -23.2~\mathrm{kJ} \end{align*}\]

The system loses 23.2 kJ worth of heat (i.e. –23.2 kJ). Therefore, a positive 23.2 kJ worth of heat is released to the surroundings.

Practice – Specific Heat Capacity


The specific heat capacity of lead is 0.13 J g–1 °C–1. How much heat (in J) is required to raise the temperature of 15 g of lead from 22 °C to 37 °C?

Solution

\[\begin{align*} q &= mc_s\Delta T \\ &= \left ( 15~\mathrm{g} \right ) \left ( 0.13~\mathrm{J~g^{-1}~^{\circ}C^{-1}}\right ) \left ( 37~^{\circ}\mathrm{C} - 22~^{\circ}\mathrm{C} \right ) \\ &= 29~\mathrm{J} \end{align*}\]

Practice – Coffee Cup Calorimetry


The ΔH for the solution process when solid sodium hydroxide dissolves in water is 44.4 kJ mol–1. When a 13.9 g sample of NaOH dissolves in 250.0 g of water to make a solution in a coffee-cup calorimeter, the temperature increases from an initial temperature of 23.0 °C. Determine the final temperature (in °C) of the system. Assume the solution has the same specific heat as liquid water (i.e. 4.184 J mol–1 K–1).

Solution

Determine the ΔH for the dissolution of 13.9 g of NaOH in water.

\[\mathrm{NaOH}(s) \xrightarrow{\mathrm{H_2O}} \mathrm{Na^+}(aq) + \mathrm{OH^-}(aq)\]  

\[\begin{align*} \Delta H &= \left ( \Delta H^{\circ} \right ) \left ( n_{\mathrm{NaOH}} \right ) \\[2ex] &= \left ( \dfrac{44.4~\mathrm{kJ}}{1~\mathrm{mol~NaOH}} \right ) \left ( \dfrac{13.9~\mathrm{g}}{} \right ) \left ( \dfrac{\mathrm{mol}}{40.0~\mathrm{g}} \right ) \\[2ex] &= 15.43~\mathrm{kJ} \end{align*}\]

Convert kJ to J.

\[\begin{align*} 15.43~\mathrm{kJ} \left ( \dfrac{10^3~\mathrm{J}}{\mathrm{kJ}} \right ) = 15430~\mathrm{J} \end{align*}\]

Recall that ΔH = q under constant pressure conditions. Find the final temperature of the system.

\[\begin{align*} q &= mc_s\Delta T \rightarrow \\[2ex] T_{f} &= \dfrac{q}{mc_s} + T_i \\[2ex] &= \left [ \dfrac{15430~\mathrm{J}} {\left ( 250.0~\mathrm{g} + 13.9~\mathrm{g} \right ) \left ( 4.184~\mathrm{J~g^{-1}~^{\circ}C} \right ) } \right ] + 23.0~^{\circ}\mathrm{C} \\[2ex] &= 37.0~^{\circ}\mathrm{C} \end{align*}\]

Practice – Enthalpy


Determine the enthalpy of reaction (in kJ) for the following reaction
     4NO(g) → 2NO2(g) + N2(g)
given the reaction data:
     N2(g) + O2(g) → 2NO(g)      ΔH = 180.7 kJ
     2NO(g) + O2(g) → 2NO2(g)      ΔH = –113.1 kJ

Solution

Transform and combine the given reference reactions to obtain the reaction of interest. Transform ΔH appropriately.

Steps:

  1. Reverse the first reaction to get N2(g) on the right.
  2. Add the second reaction as-is to get 2NO2(g) on the right.

\[\begin{align*} \mathrm{2NO}(g) &\longrightarrow \mathrm{N_2}(g) + \mathrm{O_2}(g) \quad &&\Delta H = -180.7~\mathrm{kJ} \\ \mathrm{2NO}(g) + \mathrm{O_2}(g) &\longrightarrow \mathrm{2NO_2}(g) \quad &&\Delta H = -113.1~\mathrm{kJ}\\ \end{align*}\]

Adding the reactions together gives

\[\begin{align*} 4\mathrm{NO}(g) \longrightarrow \mathrm{2NO_2}(g) + \mathrm{N_2}(g) \quad \Delta H = -293.8~\mathrm{kJ}\\ \end{align*}\]

Practice – Enthalpy


Determine the ΔHrxn for the following reaction
     4NH3(g) + 5O2(g) → 4NO(g) + 6H2O(l)
using the given heats of formation (ΔHf° in kJ mol–1)
     H2O(l): –286
     NO(g): 90
     NO2(g): 34
     HNO3(aq): –207
     NH3(g): –46

Solution

It should be known that the ΔHf° for any substance in its standard form is 0 kJ mol–1. Therefore, this value does not need to be provided in order to complete this problem.

Ensure that the target reaction is balanced.

Determine the enthalpy of reaction.

\[\begin{align*} \Delta H_{\mathrm{rxn}} &= \Sigma \left (\Delta H_{\mathrm{products}} \right ) - ~~\Sigma \left (\Delta H_{\mathrm{reactants}} \right )\\[2ex] &= \left [ \left ( 4 \times \Delta H_f^{\circ}(\mathrm{NO}(g)) \right ) + \left ( 6 \times \Delta H_f^{\circ}(\mathrm{H_2O}(l)) \right ) \right ] - \\ &\phantom{=} ~~ \left [ \left ( 4 \times \Delta H_f^{\circ}(\mathrm{NH_3}(g)) \right ) + \left ( 5 \times \Delta H_f^{\circ}(\mathrm{O_2}(g)) \right ) \right ] \\[2ex] &= \left [ \left ( 4 \times 90 \right ) + \left ( 6 \times -286 \right ) \right ] - \\ &\phantom{=} ~~ \left [ \left ( 4 \times -46 \right ) + \left ( 5 \times 0 \right ) \right ]~\mathrm{kJ~mol^{-1}} \\[2ex] &= -1172~\mathrm{kJ~mol^{-1}} \end{align*}\]

Practice – Internal Energy


How can internal energy be increased?

  1. transferring heat from the surroundings to the system
  2. transferring heat from the system to the surroundings
  3. doing work on the system
Solution

A and C both increase the internal energy of a system.

Practice – Enthalpy of Formation


Which of the following reactions has a ΔHrxn° equal to the ΔHf° of the product?

  1. N2(g) + 3H2(g) → 2NH3(g)
  2. ½N2(g) + O2(g) → NO2(g)
  3. 6C(s) + 6H(g) → C6H6(l)
  4. P(g) + 4H(g) + Br(g) → PH4Br(l)
  5. 12C(g) + 11H2(g) + 11O(g) → C6H23O11(g)
Solution

Answer: B

Concept: Thermochemistry

Practice – Magnetism


Which of the following elements is paramagnetic?

  1. K
  2. Mg
  3. Ne
  4. Zn
Solution

Answer: A

Concept: Molecular orbital theory

Practice – Electron Configuration


What element has a ground state electron configuration of [Kr]5s24d1?

  1. Y
  2. Sc
  3. Zr
  4. La
Solution

Answer: A

Concept: Electron configuration

Practice – Electron Configuration


What is the correct electron configuration for aluminum?

  1. 1s22s1
  2. 1s22s22p43s23p3
  3. 1s22s22p63s23p1
  4. 1s22s22p23s23p23d24s1
  5. 1s22s22p23s23p24s25s1
Solution

Answer: C

Concept: Electron configuration

Practice – Frequency and Wavelength


What is the frequency of light (in s–1) that has a wavelength of 1.23×10–6 cm?

Solution

Convert wavelength to frequency.

\[\begin{align*} c &= \lambda\nu \rightarrow \\[2ex] \nu &= \dfrac{c}{\lambda} \\[2ex] &= \left ( \dfrac{2.998\times 10^{8}~\mathrm{m~s^{-1}}} {1.23\times 10^{-6}~\mathrm{cm} \left ( \dfrac{\mathrm{m}}{100~\mathrm{cm}}\right )} \right ) \\[2ex] &= 2.44 \times 10^{16}~\mathrm{s^{-1}} \end{align*}\]

Practice – Electron Configuration


What is the electron configuration for the Co2+ ion?

  1. [Ar]4s13d6
  2. [Ar]3d7
  3. [Ar]3d5
  4. [Ar]4s23d9
  5. [Ne]3s23p10
Solution

Answer: B

Concept: Electron configuration

Practice – Periodic Trends


Determine how electronegativity changes as you move
     i. move left to right within a period and
     ii. move top to bottom within a group
, respectively.

Solution
  1. increases
  2. decreases

Practice – Periodic Trends


Atomic radii generally increases as one moves

  1. down a group and from left to right across a period
  2. up a group and from left to right across a period
  3. down a group and from left to right across a period
  4. up a group and from right to left across a period
  5. down a group; the period position has no effect
Solution

Answer: A

Concept: Periodic trends

Practice – Periodic Trends


Which of the following atoms has the largest radius?

  1. Sr
  2. Ca
  3. K
  4. Rb
  5. Y
Solution

Answer: D

Concept: Periodic trends

Practice – Electron Configuration


Which species is isoelectronic with
     i. argon
     ii. neon
, respectively?

  1. Cl; F
  2. Cl; Cl+
  3. F+; F
  4. Ne; Kr+
  5. Ne; Ar+
Solution

Answer: A

Concept: Electron configuration

Practice – Specific Heat Capacity


A 65.0 g piece of iron at 525 °C is put into 635 g of water at 15.0 °C. What is the final temperature (in °C) of the iron and water? The specific heat of iron is 0.451 J g–1 °C–1.

Solution

This question assumes that the reader has committed to memory the specific heat of water (4.184 J mol–1 °C–1).

\[\begin{align*} -q_{\mathrm{iron}} &= q_{\mathrm{water}} \\[2ex] -mc_{s,\mathrm{iron}}\Delta T &= mc_{l,\mathrm{water}}\Delta T \\[2ex] -\left (65.0~\mathrm{g}\right ) \left ( 0.451~\mathrm{J~g^{-1}~^{\circ}C^{-1}} \right ) \left ( \Delta T \right ) &= \left ( 635~\mathrm{g} \right ) \left ( 4.184~\mathrm{J~g^{-1}~^{\circ}C^{-1}} \right ) \left ( \Delta T \right ) \\[2ex] -29.315~\mathrm{J~^{\circ}C^{-1}} \left ( T_f - T_{i,\mathrm{iron}} \right ) &= 2656.84~\mathrm{J~^{\circ}C^{-1}} \left ( T_f - T_{i,\mathrm{water}} \right ) \\[2ex] \left ( -29.315~\mathrm{J~^{\circ}C^{-1}} \times T_f \right ) - \left ( -29.315~\mathrm{J~^{\circ}C^{-1}} \times 525~^{\circ}\mathrm{C} \right ) &= \left ( 2656.84~\mathrm{J~^{\circ}C^{-1}} \times T_f \right ) - \left ( 2656.84~\mathrm{J~^{\circ}C^{-1}} \times 15.0~^{\circ}\mathrm{C} \right ) \\[2ex] \left ( -29.315~\mathrm{J~^{\circ}C^{-1}} \times T_f \right ) + \left ( 15390.375~\mathrm{J} \right ) &= \left ( 2656.84~\mathrm{J~^{\circ}C^{-1}} \times T_f \right ) - \left ( 39852.6~\mathrm{J} \right ) \\[2ex] \left ( -29.315~\mathrm{J~^{\circ}C^{-1}} \times T_f \right ) - \left ( 2656.84~\mathrm{J~^{\circ}C^{-1}} \times T_f \right ) &= -55242.975~\mathrm{J}\\[2ex] -2686.155~\mathrm{J~^{\circ}\mathrm{C}^{-1}} \times T_f &= -55252.975~\mathrm{J}\\[2ex] T_f &= 20.6~^{\circ}\mathrm{C} \end{align*}\]

Practice – Enthalpy of Formation


Consider the following reaction.
     2Mg(s) + O2(g) → 2MgO(s)    ΔH = –1204 kJ mol–1

  1. Is the reaction endothermic or exothermic?
  2. What is the heat transferred when 2.4 g of Mg(s) reacts at a constant pressure?
Solution

Part A

The reaction is exothermic. ΔH is a negative value.

Part B

Determine the change in heat of the system.

\[\begin{align*} \Delta H_{\mathrm{rxn}} &= \left ( \Delta H \right ) \left ( n_{\mathrm{Mg}} \right ) \\[2ex] &= \left ( \dfrac{-1204~\mathrm{kJ}}{\mathrm{2~mol}} \right ) \left ( \dfrac{2.4~\mathrm{g}}{} \right ) \left ( \dfrac{\mathrm{mol}}{24.31~\mathrm{g}} \right ) \\[2ex] &= -59.43~\mathrm{kJ} \end{align*}\]

The heat released is a positive quantity. Therefore, 59.43 kJ was released.

Practice – Wavelength and Energy


Calculate the wavelength (in nm) for orange light if the energy of one photon is 3.18×10–19 J.

Solution

\[\begin{align*} E &= \dfrac{hc}{\lambda} \rightarrow \\[2ex] \lambda &= \dfrac{hc}{E} \\[2ex] &= \left ( \dfrac{\left (6.626\times 10^{-34}~\mathrm{J~s} \right ) \left (2.998\times 10^{8}~\mathrm{m~s^{-1}}\right ) } {3.18\times 10^{-19}~\mathrm{J}} \right ) \left ( \dfrac{10^9\mathrm{nm}}{\mathrm{m}} \right )\\[2ex] &= 625~\mathrm{nm} \end{align*}\]

Practice – Wavelength and Energy


An electron in hydrogen drops from n=7 to n=3. What is the wavelength of the photon (in µm)? What is the energy (in J) of the photon emitted.

Solution

Find the wavelength using the Rydberg equation.

\[\begin{align*} \dfrac{1}{\lambda} &= R_{\infty} \left ( \dfrac{1}{n_1^2} - \dfrac{1}{n_2^2} \right ) \\[2ex] \lambda &= \left [ R_{\infty} \left ( \dfrac{1}{n_1^2} - \dfrac{1}{n_2^2} \right ) \right ]^{-1} \\[2ex] &= \left [ 1.097\times 10^{7} \mathrm{m}^{-1} \left ( \dfrac{1}{3^2} - \dfrac{1}{7^2} \right ) \right ]^{-1} \\[2ex] &= 1.005\times 10^{-6}~\mathrm{m} \end{align*}\]

Convert the wavelength to µm.

\[\begin{align*} \left ( \dfrac{1.005\times 10^{-6}~\mathrm{m}}{} \right ) \left ( \dfrac{10^6~\mu\mathrm{m}}{\mathrm{m}} \right ) = 1.00~\mu\mathrm{m} \end{align*}\]

Find the energy of the photon.

\[\begin{align*} E &= \dfrac{hc}{\lambda} \\[2ex] &= \left ( \dfrac{\left (6.626\times 10^{-34}~\mathrm{J~s} \right ) \left (2.998\times 10^{8}~\mathrm{m~s^{-1}}\right ) } {1.005\times 10^{-6}~\mathrm{m}} \right )\\[2ex] &= 1.98\times 10^{-19}~\mathrm{J} \end{align*}\]

Practice – Quantum Numbers


An electron in a certain atom is in the n=2 quantum level. What are the possible values of l and ml for this electron?

Solution

n=2, l=0, ml=–1,0,+1

Practice – Electron Configuration


How many unpaired electrons do the following have?

  1. O
  2. Co
  3. Ba
  4. Pb
Solution
  1. 2
  2. 3
  3. 0
  4. 2

Practice – Heat Transfer


A 98.7 °C rod with a mass of 3.253 g was placed into 36 mL of water at 22.4 °C inside of an insulated cup calorimeter. Once the water equilibrated, the final temperature was 38.75 °C. What is the specific heat (in J g–1 °C–1) of the rod assuming a complete heat transfer to only the water?

Solution

Assume that the water has a density of 1.0 g mL–1. Therefore, there is 36 g of water present. Also, this problem assumes that the reader has committed the specific heat of water (4.184 J g–1 °C–1) to memory.

\[\begin{align*} -q_{\mathrm{rod}} &= q_{\mathrm{water}} \\[2ex] -mc_{s,\mathrm{rod}}\Delta T &= mc_{l,\mathrm{water}}\Delta T \\[2ex] -\left (3.253~\mathrm{g}\right ) c_{s,\mathrm{rod}} \left ( 38.75~^{\circ}\mathrm{C} - 98.7~^{\circ}\mathrm{C} \right ) &= \left ( 36~\mathrm{g} \right ) \left ( 4.184~\mathrm{J~g^{-1}~^{\circ}C^{-1}} \right ) \left ( 38.75~^{\circ}\mathrm{C} - 22.4~^{\circ}\mathrm{C} \right ) \\[2ex] c_{s,\mathrm{rod}} \left ( 195.017~\mathrm{g~^{\circ}C^{-1}} \right ) &= 2462.70~\mathrm{J} \\[2ex] c_{s,\mathrm{rod}} &= 12.6~\mathrm{J~g^{-1}~^{\circ}C^{-1}} \end{align*}\]

Practice – Specific Heat


A small piece of silver with a temperature of 126 °C was placed into 63.0 g of water with a temperature of 22.3 °C. What is the mass of the silver if the equilibrated temperature is 26.8 °C? The specific heat of silver is 0.223 J g–1 °C–1.

Solution

\[\begin{align*} -q_{\mathrm{silver}} &= q_{\mathrm{water}} \\[2ex] -mc_{s,\mathrm{silver}}\Delta T &= mc_{l,\mathrm{water}}\Delta T \\[2ex] -m \left ( 0.223~\mathrm{J~g^{-1}~^{\circ}C^{-1}} \right ) \left ( 26.8~^{\circ}\mathrm{C} - 126~^{\circ}\mathrm{C} \right ) &= \left ( 63~\mathrm{g} \right ) \left ( 4.184~\mathrm{J~g^{-1}~^{\circ}C^{-1}} \right ) \left ( 26.8~^{\circ}\mathrm{C} - 22.3~^{\circ}\mathrm{C} \right ) \\[2ex] m \left ( 22.1216~\mathrm{J~g^{-1}}\right ) &= 1186.164~\mathrm{J} \\[2ex] &= 53.6~\mathrm{g} \end{align*}\]

Practice – Heat Transfer


What is the heat released by a 2.67 g piece of 98.0 °C lead that was added to a 25 mL sample of 22 °C water in an insulated cup calorimeter? The final temperature of the water was found to be 32.6 °C and some heat was absorbed by the calorimeter. The specific heat of lead is 0.128 J g–1 K–1.

Solution

Recall that a temperature interval in K is equivalent to a temperature interval in °C. Therefore, the specific heat of lead can be written as 0.128 J g–1 °C–1.

\[\begin{align*} -q_{\mathrm{lead}} &= mc_{s,\mathrm{lead}}\Delta T \\[2ex] &= \left ( 2.67~\mathrm{g}\right ) \left ( 0.128~\mathrm{J~g^{-1}~^{\circ}C^{-1}} \right ) \left ( 32.6~^{\circ}\mathrm{C} - 98.0~^{\circ}\mathrm{C} \right ) \\[2ex] &= 22.4~\mathrm{J} \end{align*}\]

Side note: The change in heat of the lead was –22.35 J.

Practice – Calorimetry


What is the equilibrated temperature in an insulated cup calorimeter if 50.89 g of 23.5 °C water had a 1.63 g of a 96.2 °C copper added to it? The specific heat of copper is 0.385 J g–1 °C–1.

Solution

This problem assumes that the reader has committed the specific heat of water (4.184 J g–1 °C–1) to memory.

\[\begin{align*} -q_{\mathrm{copper}} &= q_{\mathrm{water}} \\[2ex] -mc_{s,\mathrm{copper}}\Delta T &= mc_{l,\mathrm{water}}\Delta T \\[2ex] -\left (1.63~\mathrm{g}\right ) \left ( 0.385~\mathrm{J~g^{-1}~^{\circ}C^{-1}} \right ) \left ( \Delta T \right ) &= \left ( 50.89~\mathrm{g} \right ) \left ( 4.184~\mathrm{J~g^{-1}~^{\circ}C^{-1}} \right ) \left ( \Delta T \right ) \\[2ex] -0.62755~\mathrm{J~^{\circ}C^{-1}} \left ( T_f - T_{i,\mathrm{copper}} \right ) &= 212.92~\mathrm{J~^{\circ}C^{-1}} \left ( T_f - T_{i,\mathrm{water}} \right ) \\[2ex] \left ( -0.62755~\mathrm{J~^{\circ}C^{-1}} \times T_f \right ) - \left ( -0.62755~\mathrm{J~^{\circ}C^{-1}} \times 96.2~^{\circ}\mathrm{C} \right ) &= \left ( 212.92~\mathrm{J~^{\circ}C^{-1}} \times T_f \right ) - \left ( 212.92~\mathrm{J~^{\circ}C^{-1}} \times 23.5~^{\circ}\mathrm{C} \right ) \\[2ex] \left ( -0.62755~\mathrm{J~^{\circ}C^{-1}} \times T_f \right ) + \left ( 60.37031~\mathrm{J} \right ) &= \left ( 212.92~\mathrm{J~^{\circ}C^{-1}} \times T_f \right ) - \left ( 5003.62~\mathrm{J} \right ) \\[2ex] \left ( -0.62755~\mathrm{J~^{\circ}C^{-1}} \times T_f \right ) - \left ( 212.92~\mathrm{J~^{\circ}C^{-1}} \times T_f \right ) &= -5063.99~\mathrm{J}\\[2ex] -213.548~\mathrm{J~^{\circ}\mathrm{C}^{-1}} \times T_f &= -5063.99~\mathrm{J}\\[2ex] T_f &= 23.7~^{\circ}\mathrm{C} \end{align*}\]

Practice – Enthalpy


Given the following reactions
\[\begin{align*} \mathrm{2Al}(s) + \mathrm{6HCl}(aq) &\longrightarrow \mathrm{2AlCl_3}(aq) + \mathrm{3H_2}(g) \quad &&\Delta H = -1049~\mathrm{kJ} \\ \mathrm{HCl}(g) &\longrightarrow \mathrm{HCl}(aq) \quad &&\Delta H = -74.8~\mathrm{kJ} \\ \mathrm{H_2}(g) + \mathrm{Cl_2}(g) &\longrightarrow \mathrm{2HCl}(g) \quad &&\Delta H = -1845~\mathrm{kJ} \\ \mathrm{AlCl_3}(s) &\longrightarrow \mathrm{AlCl_3}(aq) \quad &&\Delta H = -323~\mathrm{kJ} \end{align*}\] calculate the ΔH (in kJ) for the following reaction:
\[2\mathrm{Al}(s) + \mathrm{3Cl_2}(g) \longrightarrow \mathrm{2AlCl_3}(s)\]

Solution

Transform and combine the given reference reactions to obtain the reaction of interest. Transform ΔH appropriately.

Steps:

  1. Write the first reaction down as-is to get 2Al(s) on the left.
  2. Multiply the second reaction by 6 to get 6HCl(aq) on the right.
  3. Multiply the third reaction by 3 to get 3Cl2(g) on the left.
  4. Reverse and multiply the fourth reaction by 2 to get 2AlCl3(s) on the right.

\[\begin{align*} \mathrm{2Al}(s) + \mathrm{6HCl}(aq) &\longrightarrow \mathrm{2AlCl_3}(aq) + \mathrm{3H_2}(g) \quad &&\Delta H = -1049~\mathrm{kJ} \\ \mathrm{6HCl}(g) &\longrightarrow \mathrm{6HCl}(aq) \quad &&\Delta H = -448.8~\mathrm{kJ} \\ \mathrm{3H_2}(g) + \mathrm{3Cl_2}(g) &\longrightarrow \mathrm{6HCl}(g) \quad &&\Delta H = -5535~\mathrm{kJ} \\ \mathrm{2AlCl_3}(aq) &\longrightarrow \mathrm{2AlCl_3}(s) \quad &&\Delta H = 646~\mathrm{kJ} \end{align*}\]

Adding the reactions together gives

\[\begin{align*} 2\mathrm{Al}(s) + \mathrm{3Cl_2}(g) \longrightarrow \mathrm{2AlCl_3}(s) \quad \Delta H = -6387~\mathrm{kJ} \end{align*}\]

Practice – Heat Transfer


What is the heat energy released when 2 moles of nitrogen react in the following reaction?
N2(g) + 3H2(g) → 2NH3(g)     ΔH = –92.0 kJ mol–1

Solution

\[\begin{align*} \Delta H &= \left ( \dfrac{-92.0~\mathrm{kJ}}{\mathrm{mol~N_2}} \right ) \left ( \dfrac{2~\mathrm{mol~N_2}}{} \right ) \\[2ex] &= -184~\mathrm{kJ} \end{align*}\]

Practice – Enthalpy of Reaction


What is the heat energy released when 0.50 moles of ammonia is formed according to the following reaction?
     N2(g) + 3H2(g) → 2NH3(g)     ΔH = –92.0 kJ mol–1

Solution

\[\begin{align*} \Delta H &= \left ( \dfrac{-92.0~\mathrm{kJ}}{2~\mathrm{mol~NH_3}} \right ) \left ( \dfrac{0.50~\mathrm{mol~NH_3}}{} \right ) \\[2ex] &= -23~\mathrm{kJ} \end{align*}\]

Practice – Heat Transfer


Find the ΔH (in kJ) when 100.0 mL of a 1 M solution of sodium hydroxide is reacted with 100.0 mL of a 1 M HCl solution in a calorimeter if the temperature rises from 21.0 °C to 34.6 °C. Assume the specific heat of the solution is 4.184 J g–1 °C–1 and the density of the solution is that of water (1 g mL–1).

Solution

The mass of the solution is 200.0 g.

\[\begin{align*} q &= mc\Delta T \\[2ex] &= \left (200.0~\mathrm{g} \right ) \left (4.184~\mathrm{J~g^{-1}~^{\circ}C^{-1}} \right ) \left (34.6~^{\circ}\mathrm{C} - 21.0~^{\circ}\mathrm{C} \right ) \left (\dfrac{\mathrm{kJ}}{10^3~\mathrm{J}} \right ) \\[2ex] &= 11.38~\mathrm{kJ} \end{align*}\]

The solution temperature increased due to the solution absorbing 11.38 kJ of heat energy. Therefore, the reaction produced 11.38 kJ of energy (exothermic) making ΔH = –11.38 kJ.

\[\begin{align*} -q_{\mathrm{reaction}} &= q_{\mathrm{solution}} \\[2ex] q_{\mathrm{reaction}} &= -q_{\mathrm{solution}} \\[2ex] &= -11.38~\mathrm{kJ} \end{align*}\]

The final answer to the appropriate number of 3 significant figures is –11.4 kJ mol–1.

Practice – Internal Energy


What is the change of internal energy of a system (in kJ) if 26.5 kJ of heat is evolved from the system and the surroundings do 562 kJ of work on the system?

Solution

The system evolves heat making q negative. Work is done on the system making w positive.

\[\begin{align*} \Delta U &= q + w \\[2ex] &= -26.5~\mathrm{kJ} + 562~\mathrm{kJ} \\[2ex] &= 536~\mathrm{kJ} \end{align*}\]

Practice – Internal Energy


What is the change in internal energy of a system that absorbs 36.8 kJ of heat and does 36.0 kJ of work on the surroundings?

Solution

The system absorbs heat making q positive. The system performs work on the surroundings making w negative.

\[\begin{align*} \Delta U &= q + w \\[2ex] &= 36.8~\mathrm{kJ} -36.0~\mathrm{kJ} \\[2ex] &= 0.8~\mathrm{kJ} \end{align*}\]

Practice – Kinetic Molecular Theory


If the velocity of an object decreases by half but the mass remains constant, how does the kinetic energy (KE) change?

A. KE is now 1/4th the original KE B. KE is now four times greater C. KE is now two times greater D. KE is now 1/2 the original KE

Solution

Answer: A

Recall the kinetic energy equation.

\[\mathrm{KE} = \dfrac{1}{2}mv^2\]

If v is one-half, then v2 is one-fourth and KE is one-fourth of what it originally was.

Practice – Kinetic Molecular Theory


If the mass of an object is decreased by half but the velocity remains constant, how does kinetic energy (KE) change?

A. KE is now 1/4th the original KE B. KE is now four times greater C. KE is now two times greater D. KE is now 1/2 the original KE

Solution

Answer: D

Recall the kinetic energy equation.

\[\mathrm{KE} = \dfrac{1}{2}mv^2\]

If m is one-half, then KE is one-half of what it originally was.

Practice – Energy and Wavelength


If a photon emits light at a wavelength of 642.6 nm, what is the energy (in J) associated with that photon?

Solution

\[\begin{align*} E &= \dfrac{hc}{\lambda} \\[2ex] &= \dfrac{\left (6.626\times 10^{-34}~\mathrm{J~s} \right ) \left (2.998\times 10^{8}~\mathrm{m~s^{-1}}\right ) } {\left ( 642.6~\mathrm{nm} \right ) \left ( \dfrac{\mathrm{m}}{10^9~\mathrm{nm}} \right ) } \\[2ex] &= 3.09\times 10^{-19}~\mathrm{J} \end{align*}\]

Practice – Energy and Frequency


A photon has a frequency of 4.8×1018 Hz. What is the wavelength (in nm) of this light?

Solution

\[\begin{align*} c &= \lambda\nu \rightarrow \\[2ex] \lambda &= \dfrac{c}{\nu} \\[2ex] &= \left ( \dfrac{2.998\times 10^{8}~\mathrm{m~s^{-1}}} {4.8\times 10^{18}~\mathrm{s^{-1}}} \right ) \left ( \dfrac{10^9~\mathrm{nm}}{\mathrm{m}} \right ) \\[2ex] &= 0.062~\mathrm{nm} \end{align*}\]

Practice – Energy and Frequency


What is the energy (in J) associated with a photon that has a frequency of 2.10×1015 s–1?

Solution

Find the wavelength of the photon.

\[\begin{align*} c &= \lambda\nu \rightarrow \\[2ex] \lambda &= \dfrac{c}{\nu} \\[2ex] &= \left ( \dfrac{2.998\times 10^{8}~\mathrm{m~s^{-1}}} {2.1\times 10^{15}~\mathrm{s^{-1}}} \right ) \\[2ex] &= 1.4276\times 10^{-7}~\mathrm{m} \end{align*}\]

Find the energy of the photon.

\[\begin{align*} E &= \dfrac{hc}{\lambda} \\[2ex] &= \dfrac{\left (6.626\times 10^{-34}~\mathrm{J~s} \right ) \left (2.998\times 10^{8}~\mathrm{m~s^{-1}}\right ) } {1.4276\times 10^{-7}~\mathrm{m}} \\[2ex] &= 1.39\times 10^{-18}~\mathrm{J} \end{align*}\]

Practice – Electron Transitions


An electron transitions from an n=5 energy state to an n=2 energy state. What is the energy (in J) associated with this transition in a hydrogen atom?

Solution

Find the wavelength using the Rydberg equation.

\[\begin{align*} \dfrac{1}{\lambda} &= R_{\infty} \left ( \dfrac{1}{n_1^2} - \dfrac{1}{n_2^2} \right ) \\[2ex] \lambda &= \left [ R_{\infty} \left ( \dfrac{1}{n_1^2} - \dfrac{1}{n_2^2} \right ) \right ]^{-1} \\[2ex] &= \left [ 1.097\times 10^{7}~\mathrm{m}^{-1} \left ( \dfrac{1}{2^2} - \dfrac{1}{5^2} \right ) \right ]^{-1} \\[2ex] &= 4.341\times 10^{-7}~\mathrm{m} \end{align*}\]

Find the energy of the photon.

\[\begin{align*} E &= \dfrac{hc}{\lambda} \\[2ex] &= \left ( \dfrac{\left (6.626\times 10^{-34}~\mathrm{J~s} \right ) \left (2.998\times 10^{8}~\mathrm{m~s^{-1}}\right ) } {4.341\times 10^{-7}~\mathrm{m}} \right )\\[2ex] &= 4.576\times 10^{-19}~\mathrm{J} \end{align*}\]

Practice – Electron Transitions


An electron transitions from an n=3 energy state to an n=2 energy state. What is the energy (in J) associated with this transition in a hydrogen atom?

Solution

Find the wavelength using the Rydberg equation.

\[\begin{align*} \dfrac{1}{\lambda} &= R_{\infty} \left ( \dfrac{1}{n_1^2} - \dfrac{1}{n_2^2} \right ) \\[2ex] \lambda &= \left [ R_{\infty} \left ( \dfrac{1}{n_1^2} - \dfrac{1}{n_2^2} \right ) \right ]^{-1} \\[2ex] &= \left [ 1.097\times 10^{7}~\mathrm{m}^{-1} \left ( \dfrac{1}{2^2} - \dfrac{1}{3^2} \right ) \right ]^{-1} \\[2ex] &= 6.563\times 10^{-7}~\mathrm{m} \end{align*}\]

Find the energy of the photon.

\[\begin{align*} E &= \dfrac{hc}{\lambda} \\[2ex] &= \left ( \dfrac{\left (6.626\times 10^{-34}~\mathrm{J~s} \right ) \left (2.998\times 10^{8}~\mathrm{m~s^{-1}}\right ) } {6.563\times 10^{-7}~\mathrm{m}} \right )\\[2ex] &= 3.027\times 10^{-19}~\mathrm{J} \end{align*}\]

Practice – Electron Configuration


Which of the following is the electron configuration for Mn?

  1. 1s22s22p63s23p63d7
  2. 1s22s22p63s23p64s23d5
  3. 4s23d5
  4. 1s22s22p63s23p64s13d6
Solution

Answer: B

Practice – Electron Configuration


Which of the following is the electron configuration for Cu+?

  1. 1s22s22p63s23p63d10
  2. 1s22s22p63s23p64s13d9
  3. 1s22s22p63s23p64s23d9
  4. 1s22s22p63s23p64s13d10
Solution

Answer: A

Practice – Electron Configuration


Which of the following is the complete electron configuration for O2–?

  1. [He]2s22p5
  2. 2s22p6
  3. 1s22s12p6
  4. 1s22s22p6
Solution

Answer: D

Practice – Electron Configuration


Which of the following is the correct electron configuration for Au?

  1. [Kr]6s24f145d9
  2. [Xe]6s14f145d10
  3. 1s22s22p63s23p64s23d104p65s24d105p66s24f145d9
  4. [Xe]6s25f145d9
Solution

Answer: B

Practice – Magnetism


Which of the following elements are diamagnetic?

  1. lead
  2. ruthenium
  3. lithium
  4. tin
Solution

Answer: A and D

Practice – Magnetism


Which of the following elements are paramagnetic?

  1. Na+
  2. Ca2+
  3. Cr3+
  4. O2–
Solution

Answer: C

Practice – Quantum Numbers


Choose the set of quantum numbers (ordered as n, l, ml, ms) that is not possible.

  1. 3, 1, 0, –1/2
  2. 4, 0, 0, +1/2
  3. 2, 3, 1, +1/2
  4. 4, 3, –2, –1/2
Solution

Answer: C

Practice – Quantum Numbers


Choose the only set of quantum numbers (ordered as n, l, ml, ms) that is possible.

  1. 6, 1, –1, +1/2
  2. 3, 0, 1, –1/2
  3. 2, 2, –1, +1/2
  4. 1, 1, 0, –1/2
Solution

Answer: A

Practice – Quantum Numbers


Which of the following is a possible set of quantum numbers (ordered as n, l, ml, ms) for an electron found in the third period of a d orbital?

  1. 3, 1, –1, +1/2
  2. 4, 2, –1, –1/2
  3. 3, 3, 0, –1/2
  4. 3, 2, –2, +1/2
Solution

Answer: D

Practice – Electron Configuration


What is the number of valence electrons for Co?

  1. 9
  2. 27
  3. 7
  4. 2
Solution

Answer: A

Practice – Electron Configuration


Which of the following pairs is isoelectronic?

  1. C4–, Cl
  2. O2–, Na+
  3. K+, Na+
  4. O2–, S2–
Solution

Answer: B

Practice – Periodic Trends


As one moves left to right across the periodic table, how do the following atomic properties generally change?
     i. atomic radius
     ii. electronegativity
     iii. electron affinity

  1. decreases, decreases, increases
  2. increases, increases, decreases
  3. increases, increases, increases
  4. decreases, increases, increases
Solution

Answer: D

Practice – Periodic Trends


As one moves down the periodic table, how do the following atomic properties generally change?
     i. atomic radius
     ii. electronegativity
     iii. electron affinity

  1. decreases, decreases, increases
  2. increases, decreases, decreases
  3. increases, increases, increases
  4. decreases, increases, increases
Solution

Answer: B

Practice – Frequency


Tsunami waves travel through the deep ocean speeds of around 800 km h–1 and have wavelengths of around 200 km. Find the frequency of a tsunami wave with this exact speed and wavelength.

  1. 900 s–1
  2. 0.00111 Hz
  3. 4.00 s–1
  4. 900 h–1
  5. 0.0144 daHz
Solution

Answer: B

While c = λν is typically used when characterizing light, the speed of light, c, can be replaced with the speed of a tsunami wave.

\[\begin{align*} \mathrm{speed} &= \lambda\nu \rightarrow \\[2ex] \nu &= \dfrac{\mathrm{speed}}{\lambda} \\[2ex] &= \dfrac{800~\mathrm{km~h^{-1}}}{200~\mathrm{km}}\\[2ex] &= 4.00~\mathrm{h^{-1}} \end{align*}\]

Since the computed frequency is not one of the given answers, convert the value into s–1.

\[\begin{align*} \left ( \dfrac{4.00}{\mathrm{h}} \right ) \left ( \dfrac{1~\mathrm{h}}{60~\mathrm{min}} \right ) \left ( \dfrac{1~\mathrm{min}}{60~\mathrm{s}} \right ) = 0.00111~\mathrm{s^{-1}} \equiv 0.00111~\mathrm{Hz} \end{align*}\]

Practice – Calorimetry


Consider the following reaction:

\[\mathrm{HCl}(aq) + \mathrm{NaOH}(aq) \longrightarrow \mathrm{H_2O}(l) + \mathrm{NaCl}(aq) \qquad \Delta H = -56.2~\mathrm{kJ~mol^{-1}}\]

An unknown mass of HCl(aq) is neutralized. The overall solution has a mass of 0.826 kg and rises in temperature by 6.5 K. Assuming that the specific heat of the solution is the same as water, how many grams of HCl were neutralized?

  1. 0.40
  2. 15
  3. 22
  4. 400
  5. not enough information
Solution

Answer: B

Recall that

\[\begin{align*} q &= mc_s\Delta T \end{align*}\]

Determine the heat absorbed by the solution. It is assumed that the reader has committed to memory the specific heat of water.

\[\begin{align*} q_{\mathrm{soln}} &= \left ( mc_{s} \Delta T \right )_{\mathrm{soln}} \\[2ex] &= \left ( 0.826~\mathrm{kg} \right ) \left ( \dfrac{10^3~\mathrm{g}}{\mathrm{kg}}\right ) \left ( 4.184~\mathrm{J~g^{-1}~^{\circ}\mathrm{C}^{-1}} \right ) \left ( 6.5~^{\circ}\mathrm{C} \right ) \\[2ex] &= 22464~\mathrm{J} \end{align*}\]

Therefore, the heat released by the reaction is

\[\begin{align*} q_{\mathrm{rxn}} &= -q_{\mathrm{soln}} \\[2ex] &= -22464~\mathrm{J} \end{align*}\]

Combine the heat released with the enthalpy of reaction to determine the mass of HCl that reacted.

\[\begin{align*} m_{\mathrm{HCl}} &= \left ( \dfrac{-22464~\mathrm{J}}{} \right ) \left ( \dfrac{\mathrm{kJ}}{10^3~\mathrm{J}} \right ) \left ( \dfrac{\mathrm{mol~HCl}}{-56.2~\mathrm{kJ}} \right ) \left ( \dfrac{36.46~\mathrm{g~HCl}}{\mathrm{mol~HCl}} \right ) \\[2ex] &= 15~\mathrm{g~HCl} \end{align*}\]

Practice – Electron Configuration


Which of the following would not have 2 valence electrons?

  1. Be
  2. Na
  3. Sc+
  4. Zn
  5. all of these have 2 valence electrons
Solution

Answer: E

  1. Be: [He]2s2
  2. Na: [Ne]3s2
  3. Sc+: [Ar]4s13d1
  4. Zn: [Ar]4s23d10
  5. all of these have 2 valence electrons

Practice – Heat


Bobert was out in his yard barefoot when he burnt his feet on one of his concrete stepping stones. He makes bad decisions and decided his best course of action was to cool this stepping stone by chucking it in his children’s kiddie pool. The stepping stone had a mass of 2.30 kg and was 44.4 °C when he burned his feet. The kiddie pool contained 28.0 L of water at 31.0 °C before the addition of the stone. What was the final temperature (in °C) of the water after the stone was tossed in and the system allowed to equilibrate?
   cs,concrete = 0.880 J g–1 °C–1
   dH2O = 1.00 g mL–1

  1. 0.0309
  2. 31.2
  3. 37.7
  4. 43.7
  5. 44.6
Solution

Answer: B

Convert all masses to grams.

\[\begin{align*} m_{\mathrm{concrete}} &= \left ( \dfrac{2.30~\mathrm{kg}}{} \right ) \left ( \dfrac{10^3~\mathrm{g}}{\mathrm{kg}} \right ) \\[2ex] &= 2300~\mathrm{g}\\[4ex] m_{\mathrm{water}} &= \left ( \dfrac{28.0~\mathrm{L}}{} \right ) \left ( \dfrac{10^3~\mathrm{mL}}{\mathrm{L}} \right ) \left ( \dfrac{1.00~\mathrm{g}}{\mathrm{L}} \right ) \\[2ex] &= 28000~\mathrm{g} \end{align*}\]

Solve for the final temperature. It is assumed that the reader has committed to memory the specific heat of water.

\[\begin{align*} q_{\mathrm{concrete}} &= -q_{\mathrm{water}} \\[2ex] (mc_s\Delta T)_{\mathrm{concrete}} &= -(mc_s\Delta T)_{\mathrm{water}} \\[2ex] \left [ \left ( 2300~\mathrm{g} \right ) \left ( 0.880~\mathrm{J~g^{-1}~^{\circ}\mathrm{C}} \right ) \left ( T_{\mathrm{f}} - 44.4~^{\circ}\mathrm{C} \right ) \right ]_{\mathrm{concrete}} &= - \left [ \left ( 28000~\mathrm{g} \right ) \left ( 4.184~\mathrm{J~g^{-1}~^{\circ}\mathrm{C}} \right ) \left ( T_{\mathrm{f}} - 31.0~^{\circ}\mathrm{C} \right ) \right ]_{\mathrm{water}} \\[2ex] T_{\mathrm{f}} &= 31.2~^{\circ}\mathrm{C} \end{align*}\]

Practice – Quantum Numbers


Which of the following sets of quantum numbers describes the highest energy electron in the ground state electron configuration of potassium (K)?

  1. n=1, l=0, ml=0, ms=+1/2
  2. n=3, l=2, ml=1, ms=+1/2
  3. n=4, l=2, ml=1, ms=+1/2
  4. n=4, l=0, ml=0, ms=+1/2
  5. n=4, l=3, ml=3, ms=+1/2
Solution

Answer: D

The electron configuration for K is

\[[\mathrm{Ar}]4s^1\]

Core electrons will all have lower energy than the 4s1 valence electron. For the valence electron, n=4 and l=0 since the atomic orbital is an s orbital. ml can only be 0 and ms can only be +/- 1/2.

Practice – Electron Configuration


Match the concept to its name.

ID Name ID Concept

A

Pauli exclusion principle

X

Electrons are added to the lowest energy orbitals before moving to higher energy orbitals

B

Aufbau principle

Y

No two electrons can have the same four quantum numbers

C

Hund’s Rule

Z

The most stable arrangement of electrons maximizes the number of electrons with the same spin

  1. A:X, B:Y, C:Z
  2. A:Y, B:X, C:Z
  3. A:Z, B:X, C:Y
  4. A:Y, B:Z, C:X
  5. A:X, B:Z, C:Y
Solution

Answer: B

Practice – Hess’s Law


Consider the following equations:

\[\begin{align*} \mathrm{2B}(s) + \mathrm{3H_2}(g) &\longrightarrow \mathrm{B_2H_6}(g) \quad &&\Delta H = 36~\mathrm{kJ~mol^{-1}} \\ \mathrm{2B}(s) + \frac{3}{2}\mathrm{O_2}(g) &\longrightarrow \mathrm{B_2O_3}(s) \quad &&\Delta H = -1273~\mathrm{kJ~mol^{-1}} \\ \mathrm{H_2}(g) + \frac{1}{2}\mathrm{O_2}(g) &\longrightarrow \mathrm{H_2O}(l) \quad &&\Delta H = -286~\mathrm{kJ~mol^{-1}} \\ \mathrm{H_2O}(l) &\longrightarrow \mathrm{H_2O}(g) \quad &&\Delta H = 44~\mathrm{kJ~mol^{-1}} \end{align*}\]

Calculate ΔH (in kJ mol–1) for the combustion of borane given as

\[\mathrm{B_2H_6}(g) + \mathrm{3O_2}(g) \longrightarrow \mathrm{B_2O_3}(s) + \mathrm{3H_2O}(g)\]

  1. –1463
  2. –1151
  3. –1963
  4. –2035
  5. –3612
Solution

Answer: D

Transform and combine the given reference reactions to obtain the reaction of interest. Transform ΔH appropriately.

Steps:

  1. Reverse the first reaction to get B2H6 on the left.
  2. Add the second reaction to get B2O3 on the right.
  3. Add three times the third reaction to get rid of H2 on the right.
  4. Add three times the fourth reaction.

\[\begin{align*} \mathrm{B_2H_6}(g) &\longrightarrow \mathrm{2B}(s) + \mathrm{3H_2}(g) \quad &&\Delta H = -36~\mathrm{kJ~mol^{-1}} \\ \mathrm{2B}(s) + \frac{3}{2}\mathrm{O_2}(g) &\longrightarrow \mathrm{B_2O_3}(s) \quad &&\Delta H = -1273~\mathrm{kJ~mol^{-1}} \\ \mathrm{3H_2}(g) + \frac{3}{2}\mathrm{O_2}(g) &\longrightarrow \mathrm{3H_2O}(l) \quad &&\Delta H = -858~\mathrm{kJ~mol^{-1}} \\ \mathrm{3H_2O}(l) &\longrightarrow \mathrm{3H_2O}(g) \quad &&\Delta H = 132~\mathrm{kJ~mol^{-1}} \end{align*}\]

Adding the reactions together gives

\[\begin{align*} \mathrm{B_2H_6}(g) + \mathrm{3O_2}(g) \longrightarrow \mathrm{B_2O_3}(s) + \mathrm{3H_2O}(g) \qquad \Delta H = -2035~\mathrm{kJ~mol^{-1}} \end{align*}\]

Practice – Electron Configuration


Assume that a particular anion and a particular cation are isoelectronic. Which has the larger radius? Choose the most correct answer.

  1. The anion has the larger ionic radius
  2. The cation has the larger ionic radius
  3. The ionic radii are the same because they are isoelectronic
  4. Which is larger is dependent on the number of neutrons
  5. There is no way to tell
Solution

Answer: A

Practice – Wavelength


A mole of photons has an energy of 292 kJ. What is the wavelength (in nm) of one photon?

  1. 6.80×10–31
  2. 6.80×10–22
  3. 4.10×10–7
  4. 4.10×102
  5. 4.85×10–19
Solution

Answer: D

Determine the energy of a single photon.

\[\begin{align*} \left ( \dfrac{292~\mathrm{kJ}}{\mathrm{mol}} \right ) \left ( \dfrac{\mathrm{mol}}{6.022\times 10^{23}~\mathrm{photons}} \right ) \left ( \dfrac{10^3~\mathrm{J}}{\mathrm{kJ}} \right ) = 4.85\times 10^{-19}~\mathrm{J~photon^{-1}} \end{align*}\]

Find the wavelength of the photon.

\[\begin{align*} E &= \dfrac{hc}{\lambda} \rightarrow \\[2ex] \lambda &= \dfrac{hc}{E} \\[2ex] &= \left ( \dfrac{(6.626\times 10^{24}~\mathrm{J~s})(2.998\times 10^{8}~\mathrm{m~s^{-1}})} {4.85\times 10^{-19}~\mathrm{J}}\right ) \left ( \dfrac{10^{9}~\mathrm{nm}}{\mathrm{m}} \right ) \\[2ex] &= 410~\mathrm{nm} \end{align*}\]

Practice – Electron Configuration


Give the ground state electron configuration for Se.

  1. 1s22s22p63s23p6 4s24p4
  2. 1s22s22p63s23p6 4s23d104p4
  3. 1s22s22p63s23p6 4s24d104p4
  4. 1s22s22p63s23p6 4s24p44d10
Solution

Answer: B

Practice – Work


A system under 5.0 atm of constant pressure is compressed from 2.50 L to 0.14 L. What is the value of work for the system? (1 L atm = 101.3 J)

  1. 1.2
  2. 12
  3. –1.2
  4. –12
  5. none of the above
Solution

Answer: A

Find the work performed in kJ.

\[\begin{align*} w &= -P\Delta V \\[2ex] &= -\left ( 5.0~\mathrm{atm} \right ) \left ( 0.14~\mathrm{L} - 2.50~\mathrm{L} \right ) \left ( \dfrac{101.3~\mathrm{J}}{\mathrm{L~atm}} \right ) \left ( \dfrac{\mathrm{kJ}}{10^3~\mathrm{J}} \right ) \\[2ex] &= 1.18~\mathrm{kJ} \end{align*}\]

Practice – Heat


175 mL of boiling 100 °C water (d ≈ 1.00 g mL–1) is poured into a 23.00 °C ceramic mug. The mug and water come to a final temperature 24.00 °C. Assuming 100% thermal energy transfer, what is the heat capacity (in J °C–1) of the mug?

  1. 5.56×104
  2. –5.56×104
  3. 1.75×104
  4. –1.75×104
  5. not enough information; cannot be determined
Solution

Answer: A

Find the mass of the water.

\[\begin{align*} m_{\mathrm{water}} &= \left ( \dfrac{175~\mathrm{mL}}{} \right ) \left ( \dfrac{1.00~\mathrm{g}}{\mathrm{L}} \right ) \\[2ex] &= 175~\mathrm{g} \end{align*}\]

Find the heat capacity of the mug.

\[\begin{align*} q_{\mathrm{mug}} &= -q_{\mathrm{water}} \\[2ex] (C\Delta T)_{\mathrm{mug}} &= -(mc_s\Delta T)_{\mathrm{water}} \\[2ex] \left [ \left (C \right ) \left ( 24.00~^{\circ}\mathrm{C} - 23.00~^{\circ}\mathrm{C} \right ) \right ]_{\mathrm{mug}} &= - \left [ \left ( 175~\mathrm{g} \right ) \left ( 4.184~\mathrm{J~g^{-1}~^{\circ}\mathrm{C}} \right ) \left ( 24.00~^{\circ}\mathrm{C} - 100.00~^{\circ}\mathrm{C} \right ) \right ]_{\mathrm{water}} \\[2ex] C_{\mathrm{mug}} &= 5.56\times 10^{4}~\mathrm{J}~^{\circ}\mathrm{C}^{-1} \end{align*}\]

Practice – Work


25 mL of 0.45 M sulfuric acid and 15 mL of 1.20 M potassium hydroxide are combined in a small flask at constant pressure. How much heat (in kJ) is produced?

\[\mathrm{H_2SO_4}(aq) + \mathrm{2KOH}(aq) \longrightarrow \mathrm{K_2SO_4}(aq) + \mathrm{H_2O}(l) \qquad \Delta H = -104.2~\mathrm{kJ~mol^{-1}}\]

  1. 1.17
  2. 0.94
  3. 1.88
  4. 0.59
  5. Heat cannot be directly related to the given question.
Solution

Answer: B

Determine the heat generated if each reactant reacted completely. The limiting reactant will give the smaller in magnitude energy.

H2SO4

\[\begin{align*} \left ( \dfrac{25~\mathrm{mL}}{} \right ) \left ( \dfrac{\mathrm{L}}{10^3~\mathrm{mL}} \right ) \left ( \dfrac{0.45~\mathrm{mol}}{\mathrm{L}} \right ) \left ( \dfrac{-104.2~\mathrm{kJ}}{\mathrm{mol}} \right ) = -1.17~\mathrm{kJ} \end{align*}\]

KOH

\[\begin{align*} \left ( \dfrac{15~\mathrm{mL}}{} \right ) \left ( \dfrac{\mathrm{L}}{10^3~\mathrm{mL}} \right ) \left ( \dfrac{1.20~\mathrm{mol}}{\mathrm{L}} \right ) \left ( \dfrac{-104.2~\mathrm{kJ}}{2~\mathrm{mol}} \right ) = -0.94~\mathrm{kJ} \end{align*}\]

KOH is limiting and the heat produced is 0.94 kJ.









Practice – Properties


Which of the following describes a chemical property?

  1. Mercury(II) oxide is orange
  2. Hydrogen is flammable
  3. Mercury is a liquid
  4. Calcium carbonate is brittle
  5. Water has a density of 1.0 g mL–1
Solution

Answer: B

The others are physical properties.

Practice – Units


Which of these is not a fundamental SI unit?

  1. kilogram
  2. second
  3. liter
  4. meter
  5. ampere
Solution

Answer: C

Volume is a derived unit from the base SI unit of length.

Practice – Matter


Which statement about the phases of matter is correct?

  1. Gases and liquids expand to fill the volume of their container
  2. Solids and plasmas take the shape of their container
  3. Solids and liquids have definite volumes that are nearly independent of pressure
  4. The molecules in a gas are considered to be very close together
  5. Liquids are generally considered to contain many electrically charged particles.
Solution

Answer: C

Practice – Accuracy and Precision


The density of gold is 19.32 g cm–3. A student performs three separate measurements of the volume of a piece of gold weighing 37.5 g and obtains the following results:
     Trial 1: 3.5 mL
     Trial 2: 3.7 mL
     Trial 3: 3.4 mL

Which of the following bests describes these results?

  1. Both accurate and precise
  2. Accurate but not precise
  3. Precise but not accurate
  4. Extremely perfect
  5. Very approximate
Solution

Answer: C

Determine the density of gold from the given trial information.

\[\begin{align*} d_{\mathrm{Au,Trial~1}} &= \dfrac{37.5~\mathrm{g}}{3.5~\mathrm{mL}} = 10.7~\mathrm{g~mL^{-1}} \rightarrow 11~\mathrm{g~mL^{-1}}\\[2ex] d_{\mathrm{Au,Trial~2}} &= \dfrac{37.5~\mathrm{g}}{3.7~\mathrm{mL}} = 10.1~\mathrm{g~mL^{-1}} \rightarrow 10~\mathrm{g~mL^{-1}}\\[2ex] d_{\mathrm{Au,Trial~3}} &= \dfrac{37.5~\mathrm{g}}{3.4~\mathrm{mL}} = 11.0~\mathrm{g~mL^{-1}} \rightarrow 11~\mathrm{g~mL^{-1}} \end{align*}\]

The determined values are relatively close together (precise) but not close to the actual density of gold (not accurate).

Practice – Metric System


Which of these values are equal?

I. 3×1011 picograms II. 3×109 micrograms III. 3×10–1 grams IV. 3×10–4 kilograms V. 3×102 megagrams

  1. I and III
  2. I, III, and IV
  3. II and IV
  4. IV and V
  5. I, II, and III
Solution

Answer: B

Practice – Temperature


The title of American author Ray Bradbury’s dystopian science fiction novel, Fahrenheit 451, supposedly refers to the autoignition temperature of paper. What might this book have been called if Ray Bradbury had been British?

  1. Celsius 233
  2. Celsius 219
  3. Celsius 780
  4. Celsius 268
  5. Celsius 754
Solution

Answer: A

\[\begin{align*} T_{^{\circ}\mathrm{C}} &= \dfrac{5}{9}\left ( ^\circ\mathrm{F} - 32 \right ) \\[2ex] &= \dfrac{5}{9}\left ( 451 - 32 \right ) \\[2ex] &= 233~\mathrm{^{\circ}C} \end{align*}\]

Practice – Significant Figures


Which of these numbers has the most significant figures?

  1. 425,000
  2. 3.760×104
  3. 0.00088
  4. 808.00
  5. 7.01×10–9
Solution

Answer: D

Practice – Temperature


A sample of mercury was warmed from its freezing point (234 K) to room temperature (298 K) for a total change of 64 K. By how many °C was the sample warmed?

  1. 64
  2. 234
  3. 337
  4. –209
  5. 96
Solution

Answer: A

A change in 1 K is equivalent to a change in 1 °C. Therefore, a change in 64 K is equivalent to a change in 64 °C.

Practice – Significant Figures


What is the correct answer (to the appropriate number of significant figures) for the following calculation
     (3.5 + 32.00) × (0.07 + 2.100)

  1. 80
  2. 77
  3. 77.0
  4. 77.03
  5. 77.04
Solution

Answer: C

Practice – Dimensional Analysis


The density of air at sea level and 15 °C is 1.225 kg m–3. How many kilograms would 5.00 mL of air weigh?

  1. 6.12×10–6
  2. 4.08×10–5
  3. 6.12×10–3
  4. 2.45×105
  5. 4.08 kg
Solution

Answer: A

\[\begin{align*} \left ( \dfrac{5.00~\mathrm{mL}}{} \right ) \left ( \dfrac{\mathrm{cm^3}}{\mathrm{mL}} \right ) \left ( \dfrac{\mathrm{m}}{10^2~\mathrm{cm}} \right )^3 \left ( \dfrac{1.225~\mathrm{kg}}{\mathrm{m}^3} \right ) = 6.13 \times 10^{-6}~\mathrm{kg} \end{align*}\]

Practice – Elements


Which of these statements is false?

  1. Elements cannot be broken down into simpler substances
  2. A homogeneous mixture can be separated using physical changes
  3. Atoms are the smallest particles of an element that have the properties of that element
  4. Compounds are pure substances
  5. A molecule must consist of two or more atoms of different elements joined together by chemical bonds
Solution

Answer: E

Practice – Dimensional Analysis


Sulfuric acid is one of the most widely used chemicals in the world and 1.2×108 kg produced per day. Given that the density of sulfuric acid is 1.84 g mL–1, how many milliliters of sulfuric acid are produced per second?

  1. 7.5×102
  2. 4.5×107
  3. 2.6×106
  4. 7.5×105
  5. 2.6×103
Solution

Answer: D

\[\begin{align*} \left ( \dfrac{1.2\times 10^{8}~\mathrm{kg}}{\mathrm{d}} \right ) \left ( \dfrac{10^3~\mathrm{g}}{\mathrm{kg}} \right ) \left ( \dfrac{\mathrm{mL}}{1.84~\mathrm{g}} \right ) \left ( \dfrac{\mathrm{d}}{24~\mathrm{h}} \right ) \left ( \dfrac{\mathrm{h}}{60~\mathrm{min}} \right ) \left ( \dfrac{\mathrm{min}}{60~\mathrm{s}} \right ) = 7.5\times 10^{5}~\mathrm{mL~s^{-1}} \end{align*}\]

Practice – Law


Which of these describes an experiment whose results are consistent with the law of multiple proportions?

  1. Several samples of iron(III) oxide were tested and all were 69.9% iron and 30.1% oxygen by mass
  2. In two separate experiments, 1.000 g of iron were reacted with either 0.4297 g or 0.2865 g of oxygen to give two new compounds
  3. When a sample of iron metal reacts with oxygen, the total mass of the system remains unchanged
  4. A mixture of iron pellets and iron(III) oxide powder is separated using a magnet
  5. An iron bar weighing 15.2 g was found to have a volume of 1.93 cm3
Solution

Answer: B

Practice – History


Which experiment(s) proved that the “plum pudding” model of the atom was incorrect?

  1. Rutherford’s gold foil experiment
  2. J. J. Thompson’s cathode raw tube
  3. Frederic Soddy’s experiments with isotopes
  4. Millikan’s oil drop experiment
  5. Roentgen’s discovery of X-rays
Solution

Answer: A

Practice – Atomic Structure


A neutral atom of molybdenum has a mass number of 95. How many protons, neutrons, and electrons does it contain?

  1. 42 protons, 95 neutrons, and 42 electrons
  2. 42 protons, 53 neutrons, and 95 electrons
  3. 42 protons, 53 neutrons, and 42 electrons
  4. 42 protons, 53 neutrons, and 53 electrons
  5. 95 protons, 95 neutrons, and 95 electrons
Solution

Answer: C

Practice – Atomic Structure


Which of the following could describe an atom or ion with 33 electrons?

  1. A selenium-79 atom
  2. A gallium-69 cation
  3. A germanium-72 anion
  4. all of these
  5. none of these
Solution

Answer: C

Practice – Structural Formulas


The structural formulas for two different compounds (methyl ether and ethanol) are shown below.

Which of the following might not be true about these two compounds?

  1. They have the same molecular formula
  2. They have the same empirical formula
  3. They are structural isomers
  4. They have the same boiling point
  5. They obey the law of constant composition
Solution

Answer: C

Practice – Periodic Table


Which term refers to the columns in the periodic table?

  1. groups
  2. periods
  3. series
  4. classes
  5. kingdoms
Solution

Answer: A

Practice – Periodic Table


Which statement(s) about the elements are false?

  1. All of the lanthanides and actinides are metals
  2. Some of the halogens occur naturally as diatomic gases
  3. Hydrogen is an alkali metal
    1. and (b)
    1. and (c)
Solution

Answer: C

Practice – Percent Abundance


Boron has two stable isotopes. The most abundant (80.1%) is boron-11 with an atomic mass of 11.01 amu. What are the percent abundance and atomic mass of the other stable isotope?

  1. 18.4%, 10.8 amu
  2. 19.9%, 6.73 amu
  3. 10.8%, 10.0 amu
  4. 19.9%, 10.0 amu
  5. 19.9%, 10.8 amu
Solution

Answer: D

The other stable isotope of boron has a percent abundance of

\[100\% - 80.1\% = 19.9\%\]

Determine the mass (in amu) of this isotope.

\[\begin{align*} 10.81 &= \left ( \dfrac{80.1}{100} \right ) \left ( 11.01 \right ) + \left ( \dfrac{19.9}{100} \right )x \\[2ex] x &= 10.0~\mathrm{amu} \end{align*}\]

Practice – Ions


Which of the following shows an ion with its most common charge?

  1. Al3+
  2. Mg+
  3. Br2–
  4. Se5–
  5. none of these
Solution

Answer: A

Practice – Ions


Which of the following correctly names the ion?

  1. NO3, pernitrate
  2. PO43–, perphosphate
  3. SO42–, persulfate
  4. ClO4, perchlorate
  5. CO32–, percarbonate
Solution

Answer: D

Practice – Empirical Formula


Predict the empirical formula of alumina, a mineral containing Al3+ cations and O22– anions.

  1. AlO3
  2. Al2O
  3. AlO
  4. Al2O3
  5. Al3O2
Solution

Answer: D

Practice – Empirical Formula


What is the correct systematic name for the compound P4O10?

  1. Tetraphosphate
  2. Phosphorus(V) oxide
  3. Phosphoric acid
  4. Phosphorus(IV) oxide
  5. Tetraphosphorus decaoxide
Solution

Answer: E

Practice – Empirical Formula


What is the correct systematic name for the compound Fe(NO3)2?

  1. Iron nitrate
  2. Iron dinitrate
  3. Iron(III) nitrate
  4. Iron(II) nitrate
  5. Iron(II) dinitrate
Solution

Answer: D

Practice – Reaction Yield


Steam reforming of methane (CH4) is the most important industrial process for the production of hydrogen gas (H2) and is represented by the following balanced reaction:

\[\mathrm{H_2O}(g) + \mathrm{CH_4}(g) \longrightarrow \mathrm{CO}(g) + 3\mathrm{H_2}(g)\] The United States produces around 9.0×106 tons of hydrogen gas per year using this process (1 ton = 907 kg). The yield for this process is 65%. How much methane (in kg) is consumed in this process per year?

  1. 3.4×1010
  2. 2.2×1010
  3. 3.3×1013
  4. 6.5×1010
  5. 1.03.3×1011
Solution

Answer: A

Determine the theoretical yield of the reaction.

\[\begin{align*} \%~\mathrm{yield} &= \dfrac{\mathrm{actual}}{\mathrm{theoretical}} \times 100 \rightarrow \\[2ex] \mathrm{theoretical} &= \dfrac{\mathrm{actual}\times 100}{\%~\mathrm{yield}}\\[2ex] &= \dfrac{(9.0\times 10^{6}~\mathrm{tons~H_2})(100)}{65}\\[2ex] &= 1.385\times 10^{7}~\mathrm{tons~H_2} \end{align*}\]

Convert tons of H2 to mol H2.

\[\begin{align*} n_{\mathrm{H_2}} &= \left ( \dfrac{1.385\times 10^{7}~\mathrm{tons~H_2}}{} \right ) \left ( \dfrac{\mathrm{907~kg}}{\mathrm{ton}} \right ) \left ( \dfrac{\mathrm{10^3~g}}{\mathrm{kg}} \right ) \left ( \dfrac{\mathrm{mol~H_2}}{\mathrm{2.016~g~H_2}} \right )\\[2ex] &= 6.2311\times 10^{12}~\mathrm{mol~H_2} \end{align*}\]

Using stoichiometry, convert mol H2 to kg of CH4.

\[\begin{align*} m_{\mathrm{CH_4}} &= \left ( \dfrac{6.2311~\mathrm{mol~H_2}}{} \right ) \left ( \dfrac{1~\mathrm{mol~CH_4}}{3~\mathrm{mol~H_2}} \right ) \left ( \dfrac{\mathrm{16.04~g~CH_4}}{\mathrm{mol~CH_4}} \right ) \left ( \dfrac{\mathrm{kg}}{\mathrm{10^3~g}} \right )\\[2ex] &= 3.33\times 10^{10}~\mathrm{kg~CH_4} \end{align*}\]

Practice – Reaction Yield


In a fantasy universe, a student combines 23 mL of 0.114 M aluminum bicarbonate solution and 6.75 mL of 0.89 M rubidium hydroxide solution. Assuming a 100% yield, what mass (in g) of precipitate is formed?

  1. 0.20
  2. 0.156
  3. 0.820
  4. 0.468
  5. 1.1
Solution

Answer: B

Write out a balanced chemical equation. Use solubility rules to determine the phases of each substance and to identify the precipitate of reaction (here Al(OH)3).

\[\mathrm{Al(HCO_3)_3}(aq) + \mathrm{3RbOH}(aq) \longrightarrow \mathrm{Al(OH)_3}(s) + \mathrm{3RbHCO_3}(aq)\]

Determine the theoretical yield by treating each reactant as undergoing complete reaction.

For Al(HCO3)3:

\[\begin{align*} m_{\mathrm{Al(OH_3)}} &= \left ( \dfrac{23~\mathrm{mL}}{} \right ) \left ( \dfrac{\mathrm{L}}{10^3~\mathrm{mL}} \right ) \left ( \dfrac{0.114~\mathrm{mol}}{\mathrm{L}} \right ) \left ( \dfrac{1~\mathrm{mol~Al(OH)_3}}{1~\mathrm{mol~Al(HCO_3)_3}} \right ) \left ( \dfrac{78.00~\mathrm{g~Al(OH)_3}}{\mathrm{mol~Al(OH)_3}} \right ) \\[2ex] &= 0.20~\mathrm{g~Al(OH)_3} \end{align*}\]

For RbOH:

\[\begin{align*} m_{\mathrm{Al(OH_3)}} &= \left ( \dfrac{6.75~\mathrm{mL}}{} \right ) \left ( \dfrac{\mathrm{L}}{10^3~\mathrm{mL}} \right ) \left ( \dfrac{0.89~\mathrm{mol}}{\mathrm{L}} \right ) \left ( \dfrac{1~\mathrm{mol~Al(OH)_3}}{3~\mathrm{mol~RbOH}} \right ) \left ( \dfrac{78.00~\mathrm{g~Al(OH)_3}}{\mathrm{mol~Al(OH)_3}} \right ) \\[2ex] &= 0.156~\mathrm{g~Al(OH)_3} \end{align*}\]

RbOH is the limiting reactant and therefore, only 0.156 g Al(OH)3 is formed.

Practice – Oxidation States


Consider each of the compounds below. Which underlined element has the largest oxidation number?

     MgO2
     CH4
     F2
     S2–
     NH4Cl

  1. O in MgO2
  2. C in CH4
  3. F in F2
  4. S in S2–
  5. N in NH4Cl
Solution

Answer: C

Practice – Oxidation States


Solution A is made by dissolving 1.03 g K3PO4 in 1.000 L of water. A 5.00 mL portion of Sample A is diluted to 1.000 L to form Solution B. Finally, Solution C is made by diluting 7.00 mL of Solution B to 1.000 L. What is the molar concentration of K+ in solution C?

  1. 4.90×10–3
  2. 2.45×10–5
  3. 1.72×10–7
  4. 1.47×10–2
  5. 5.09×10–7
Solution

Answer: E

Determine the molar concentration of K3PO4 in Solution A.

\[\begin{align*} c_{\mathrm{K_3PO_4}} &= \left ( \dfrac{1.03~\mathrm{g}}{1.000~\mathrm{L}} \right ) \left ( \dfrac{\mathrm{mol}}{212.27~\mathrm{g}} \right ) \\[2ex] &= 0.0048523~M~\mathrm{K_3PO_4} \end{align*}\]

Determine the molar concentration of K3PO4 in Solution B.

\[\begin{align*} M_1V_1 &= M_2V_2 \\[2ex] M_2 &= \dfrac{M_1V_1}{V_2} \\[2ex] &= \dfrac{(0.0048523~M)(0.00500~\mathrm{L})}{1.000~\mathrm{L}} \\[2ex] &= 2.426\times 10^{-5}~M~\mathrm{K_3PO_4} \end{align*}\]

Determine the molar concentration of K3PO4 in Solution C.

\[\begin{align*} M_1V_1 &= M_2V_2 \\[2ex] M_2 &= \dfrac{M_1V_1}{V_2} \\[2ex] &= \dfrac{(2.425\times 10^{-5}~M)(0.00700~\mathrm{L})}{1.000~\mathrm{L}} \\[2ex] &= 1.6983\times 10^{-7}~M~\mathrm{K_3PO_4} \end{align*}\]

Use stoichiometry to determine the concentration of K+ ions in Solution C.

\[\begin{align*} c_{\mathrm{K^+}} &= \left ( \dfrac{1.6983\times 10^{-7}~M~\mathrm{K_3PO_4}}{} \right ) \left ( \dfrac{3~\mathrm{mol~K^+}}{\mathrm{mol~K_3PO_4}} \right ) \\[2ex] &= 5.09\times 10^{-7}~M~\mathrm{K^+} \end{align*}\]

Practice – Ionic Reactions


Which of the following statements is incorrect?

  1. AgNO3, Hg2(NO3)2, and Pb(NO3)2 are soluble
  2. In the reaction between MgSO4 and CaI2, Mg2+ is a spectator ion
  3. The net ionic equation for the reaction of H2CO3 and NaOH is H+ + OH → H2O
  4. Hydrofluoric acid is a weak acid
  5. A proton and H+ refer to the same thing
Solution

Answer: C

Since H2CO3 is a weak acid, it will appear in the net ionic equation.

Practice – Oxidation-Reduction Reactions


In a typical combustion reaction, what happens to oxygen?

  1. It is oxidized
  2. It is reduced
  3. It is both oxidized and reduced
  4. It is neither oxidized or reduced
Solution

Answer: B

In a combustion reaction, a hydrocarbon reacts with oxygen gas to form carbon dioxide and water. A general reaction scheme is given.

\[\mathrm{C}_x\mathrm{H}_y + \mathrm{O_2}(g) \longrightarrow \mathrm{CO_2} + \mathrm{H_2O}\] Each oxygen atom in O2 has an oxidation state of 0 since oxygen exists as oxygen gas in its elemental form. The oxygens in carbon dioxide and water each have a –2 oxidation state. Since oxygen’s oxidation state goes from 0 → –2, oxygen is reduced.

Practice – Molecular Formula


A sample of caffeine is found to consist of 17.77 g C, 1.86 g H, 10.04 g N, and 5.92 g O. Given that the molar mass of caffeine is about 194 g mol–1, what is the molecular formula of caffeine?

  1. C4H5N2O
  2. C10HN5O3
  3. C19H2N11O6
  4. C8H10N4O2
  5. C17H2N10O6
Solution

Answer: D

Convert each element to moles.

\[\begin{align*} n_{\mathrm{C}} &= \left ( \dfrac{17.77~\mathrm{g~C}}{} \right ) \left ( \dfrac{\mathrm{mol~C}}{12.01~\mathrm{g~C}} \right ) \\[2ex] &= 1.480~\mathrm{mol~C} \\[4ex] n_{\mathrm{H}} &= \left ( \dfrac{1.86~\mathrm{g~H}}{} \right ) \left ( \dfrac{\mathrm{mol~H}}{12.01~\mathrm{g~H}} \right ) \\[2ex] &= 1.85~\mathrm{mol~H} \\[4ex] n_{\mathrm{N}} &= \left ( \dfrac{10.04~\mathrm{g~N}}{} \right ) \left ( \dfrac{\mathrm{mol~N}}{12.01~\mathrm{g~N}} \right ) \\[2ex] &= 0.7166~\mathrm{mol~N} \\[4ex] n_{\mathrm{O}} &= \left ( \dfrac{5.92~\mathrm{g~O}}{} \right ) \left ( \dfrac{\mathrm{mol~O}}{12.01~\mathrm{g~O}} \right ) \\[2ex] &= 0.37~\mathrm{mol~O} \\[4ex] \end{align*}\]

Write a formula using the mole quantities of each element as subscripts. Divide each mole quantity by the smallest number to obtain a whole number. This gives the empirical formula.

\[\begin{align*} &\mathrm{C}_{1.480}\mathrm{H}_{1.85}\mathrm{N}_{0.7166}\mathrm{O}_{0.37} \rightarrow \\[1.5ex] &\mathrm{C}_{1.480/0.37}\mathrm{H}_{1.85/0.37}\mathrm{N}_{0.7166}\mathrm{O}_{0.37/0.37} \rightarrow \\[1.5ex] &\mathrm{C}_{4}\mathrm{H}_{5}\mathrm{N}_{2}\mathrm{O} \end{align*}\]

The molar mass for the empirical formula above is 97.10 g mol–5. The molar mass of caffeine is 194 g mol–1. Make a ratio of the two molar masses. The resulting number is what you multiply each subscript in the empirical formula with to get the molecular formula.

\[\dfrac{194~\mathrm{g~mol^{-1}}}{97.10~\mathrm{g~mol^{-1}}} = 2\]

Therefore,

\[\begin{align*} &\mathrm{C}_{4\times 2}\mathrm{H}_{5\times 2}\mathrm{N}_{2\times 2}\mathrm{O}_{1\times 2} \rightarrow \\[1.5ex] &\mathrm{C}_{8}\mathrm{H}_{10}\mathrm{N}_{4}\mathrm{O}_2 \end{align*}\]

Practice – Acid-Base Reaction


A 40.25 mL solution of hydroiodic acid is found to require 19.20 mL of 3.14 M calcium hydroxide to neutralize it. What was the molar concentration of the hydroiodic acid solution?

  1. 1.50
  2. 3.00
  3. 3.29
  4. 6.58
  5. 13.2
Solution

Answer: B

Write a balanced chemical equation.

\[2\mathrm{HI} + \mathrm{Ca(OH)_2} \longrightarrow \mathrm{CaI_2} + \mathrm{2H_2O}\]

Determine the moles of Ca(OH)2 that was required for neutralization.

\[\begin{align*} n_{\mathrm{Ca(OH)_2}} &= \left ( \dfrac{19.20~\mathrm{mL}}{} \right ) \left ( \dfrac{\mathrm{L}}{10^3~\mathrm{mL}} \right ) \left ( \dfrac{3.14~\mathrm{mol}}{\mathrm{L}} \right ) \\[2ex] &= 0.06029~\mathrm{mol} \end{align*}\]

Determine the moles of OH that was provided by Ca(OH)2.

\[\begin{align*} n_{\mathrm{OH^-}} &= \left ( \dfrac{0.06029~\mathrm{mol~Ca(OH)_2}}{} \right ) \left ( \dfrac{2~\mathrm{mol~OH^-}}{\mathrm{mol~Ca(OH)_2}} \right ) \\[2ex] &= 0.1206~\mathrm{mol} \end{align*}\]

The neutralization reaction that occurs between a strong acid (such as HI which becomes H3O+ in water) and strong base (OH) is

\[\mathrm{H_3O^+} + \mathrm{OH^-} \longrightarrow \mathrm{H_2O}\]

As seen, 1 mol of OH is required to neutralize one mol of strong acid. Therefore, the mol of HI that was neutralized in solution is

\[\begin{align*} n_{\mathrm{HI}} &= n_{\mathrm{OH^-}} \\[1.5ex] &= 0.1206~\mathrm{mol} \end{align*}\]

Determine the molar concentration of the original HI.

\[\begin{align*} c_{\mathrm{HI}} &= \dfrac{0.1206~\mathrm{mol}} {\left ( 40.25~\mathrm{mL} \right ) \left ( \dfrac{\mathrm{L}}{10^3~\mathrm{mL}} \right )} \\[2ex] &= 3.00~M \end{align*}\]